Cargando…

Glutathione Ethyl Ester Supplementation during Pancreatic Islet Isolation Improves Viability and Transplant Outcomes in a Murine Marginal Islet Mass Model

BACKGROUND: The success of pancreatic islet transplantation still faces many challenges, mainly related to cell damage during islet isolation and early post-transplant. The increased generation of reactive oxygen species (ROS) during islet isolation and the consumption of antioxidant defenses appear...

Descripción completa

Detalles Bibliográficos
Autores principales: Raposo do Amaral, Alexandre S., Pawlick, Rena L., Rodrigues, Erika, Costal, Flavia, Pepper, Andrew, Ferreira Galvão, Flávio H., Correa-Giannella, Maria Lucia, Shapiro, A. M.James
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3570543/
https://www.ncbi.nlm.nih.gov/pubmed/23424628
http://dx.doi.org/10.1371/journal.pone.0055288
Descripción
Sumario:BACKGROUND: The success of pancreatic islet transplantation still faces many challenges, mainly related to cell damage during islet isolation and early post-transplant. The increased generation of reactive oxygen species (ROS) during islet isolation and the consumption of antioxidant defenses appear to be an important pathway related to islet damage. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we evaluated whether supplementation of glutathione-ethyl-ester (GEE) during islet isolation could improve islet viability and transplant outcomes in a murine marginal islet mass model. We also cultured human islets for 24 hours in standard CMRL media with or without GEE supplementation. Supplementation of GEE decreased the content of ROS in isolated islets, leading to a decrease in apoptosis and maintenance of islet viability. A higher percentage of mice transplanted with a marginal mass of GEE treated islets became euglycemic after transplant. The supplementation of 20 mM GEE in cultured human islets significantly reduced the apoptosis rate in comparison to untreated islets. CONCLUSIONS/SIGNIFICANCE: GEE supplementation was able to decrease the apoptosis rate and intracellular content of ROS in isolated islets and might be considered a potential intervention to improve islet viability during the isolation process and maintenance in culture before islet transplantation.