Cargando…

Using an SU-8 Photoresist Structure and Cytochrome C Thin Film Sensing Material for a Microbolometer

There are two critical parameters for microbolometers: the temperature coefficient of resistance (TCR) of the sensing material, and the thermal conductance of the insulation structure. Cytochrome c protein, having a high TCR, is a good candidate for infrared detection. We can use SU-8 photoresist fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Lai, Jian-Lun, Liao, Chien-Jen, Su, Guo-Dung John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571788/
https://www.ncbi.nlm.nih.gov/pubmed/23443384
http://dx.doi.org/10.3390/s121216390
Descripción
Sumario:There are two critical parameters for microbolometers: the temperature coefficient of resistance (TCR) of the sensing material, and the thermal conductance of the insulation structure. Cytochrome c protein, having a high TCR, is a good candidate for infrared detection. We can use SU-8 photoresist for the thermal insulation structure, given its low thermal conductance. In this study, we designed a platform structure based on a SU-8 photoresist. We fabricated an infrared sensing pixel and recorded a high TCR for this new structure. The SU-8 photoresist insulation structure was fabricated using the exposure dose method. We experimentally demonstrated high values of TCR from 22%/K to 25.7%/K, and the measured noise was 1.2 × 10(−8) V(2)/Hz at 60 Hz. When the bias current was 2 μA, the calculated voltage responsivity was 1.16 × 10(5) V/W. This study presents a new kind of microbolometer based on cytochrome c protein on top of an SU-8 photoresist platform that does not require expensive vacuum deposition equipment.