Cargando…
Prediction of P53 Mutants (Multiple Sites) Transcriptional Activity Based on Structural (2D&3D) Properties
Prediction of secondary site mutations that reinstate mutated p53 to normalcy has been the focus of intense research in the recent past owing to the fact that p53 mutants have been implicated in more than half of all human cancers and restoration of p53 causes tumor regression. However laboratory in...
Autores principales: | Geetha Ramani, R., Jacob, Shomona Gracia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3572112/ https://www.ncbi.nlm.nih.gov/pubmed/23468845 http://dx.doi.org/10.1371/journal.pone.0055401 |
Ejemplares similares
-
Improved Classification of Lung Cancer Tumors Based on Structural and Physicochemical Properties of Proteins Using Data Mining Models
por: Ramani, R. Geetha, et al.
Publicado: (2013) -
Predicting Transcriptional Activity of Multiple Site p53 Mutants Based on Hybrid Properties
por: Huang, Tao, et al.
Publicado: (2011) -
Feature Signature Discovery for Autism Detection: An Automated Machine Learning Based Feature Ranking Framework
por: Jacob, Shomona Gracia, et al.
Publicado: (2023) -
Structural and Drug Targeting Insights on Mutant p53
por: Gomes, Ana Sara, et al.
Publicado: (2021) -
Investigation and prediction of the severity of p53 mutants using parameters from structural calculations
por: Carlsson, Jonas, et al.
Publicado: (2009)