Cargando…
Capicua regulates proliferation and survival of RB-deficient cells in Drosophila
Mutations in rbf1, the Drosophila homologue of the RB tumour suppressor gene, generate defects in cell cycle control, cell death, and differentiation during development. Previous studies have established that EGFR/Ras activity is an important determinant of proliferation and survival in rbf1 mutant...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575652/ https://www.ncbi.nlm.nih.gov/pubmed/23429853 http://dx.doi.org/10.1242/bio.20123277 |
Sumario: | Mutations in rbf1, the Drosophila homologue of the RB tumour suppressor gene, generate defects in cell cycle control, cell death, and differentiation during development. Previous studies have established that EGFR/Ras activity is an important determinant of proliferation and survival in rbf1 mutant cells. Here, we report that Capicua (Cic), an HMG box transcription factor whose activity is regulated by the EGFR/Ras pathway, regulates both proliferation and survival of RB-deficient cells in Drosophila. We demonstrate that cic mutations allow rbf1 mutant cells to bypass developmentally controlled cell cycle arrest and apoptotic pressure. The cooperative effect between Cic and RBF1 in promoting G1 arrest is mediated, at least in part, by limiting Cyclin E expression. Surprisingly, we also found evidence to suggest that cic mutant cells have decreased levels of reactive oxygen species (ROS), and that the survival of rbf1 mutant cells is affected by changes in ROS levels. Collectively, our results elucidate the importance of the crosstalk between EGFR/Ras and RBF1 in coordinating cell cycle progression and survival. |
---|