Cargando…

ABCD2 Is a Direct Target of β-Catenin and TCF-4: Implications for X-Linked Adrenoleukodystrophy Therapy

X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder caused by mutations in the ABCD1 gene that encodes the peroxisomal ATP-binding cassette (ABC) transporter subfamily D member 1 protein (ABCD1), which is referred to as the adrenoleukodystrophy protein (ALDP). Induction of the ABCD2 gene...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Chul-Yong, Kim, Han-Soo, Jang, Jiho, Lee, Hyunji, Lee, Jae Souk, Yoo, Jeong-Eun, Lee, Dongjin R., Kim, Dong-Wook
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578850/
https://www.ncbi.nlm.nih.gov/pubmed/23437103
http://dx.doi.org/10.1371/journal.pone.0056242
Descripción
Sumario:X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder caused by mutations in the ABCD1 gene that encodes the peroxisomal ATP-binding cassette (ABC) transporter subfamily D member 1 protein (ABCD1), which is referred to as the adrenoleukodystrophy protein (ALDP). Induction of the ABCD2 gene, the closest homolog of ABCD1, has been mentioned as a possible therapeutic option for the defective ABCD1 protein in X-ALD. However, little is known about the transcriptional regulation of ABCD2 gene expression. Here, through in silico analysis, we found two putative TCF-4 binding elements between nucleotide positions −360 and −260 of the promoter region of the ABCD2 gene. The transcriptional activity of the ABCD2 promoter was strongly increased by ectopic expression of β-catenin and TCF-4. In addition, mutation of either or both TCF-4 binding elements by site-directed mutagenesis decreased promoter activity. This was further validated by the finding that β-catenin and the promoter of the ABCD2 gene were pulled down with a β-catenin antibody in a chromatin immunoprecipitation assay. Moreover, real-time PCR analysis revealed that β-catenin and TCF-4 increased mRNA levels of ABCD2 in both a hepatocellular carcinoma cell line and primary fibroblasts from an X-ALD patient. Interestingly, we found that the levels of very long chain fatty acids were decreased by ectopic expression of ABCD2-GFP as well as β-catenin and TCF-4. Taken together, our results demonstrate for the first time the direct regulation of ABCD2 by β-catenin and TCF-4.