Cargando…
Inhibition of Carnitine Palmitoyltransferase-1 Activity Alleviates Insulin Resistance in Diet-Induced Obese Mice
Impaired skeletal muscle fatty acid oxidation has been suggested to contribute to insulin resistance and glucose intolerance. However, increasing muscle fatty acid oxidation may cause a reciprocal decrease in glucose oxidation, which might impair insulin sensitivity and glucose tolerance. We therefo...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581198/ https://www.ncbi.nlm.nih.gov/pubmed/23139350 http://dx.doi.org/10.2337/db12-0259 |
_version_ | 1782260381591273472 |
---|---|
author | Keung, Wendy Ussher, John R. Jaswal, Jagdip S. Raubenheimer, Monique Lam, Victoria H.M. Wagg, Cory S. Lopaschuk, Gary D. |
author_facet | Keung, Wendy Ussher, John R. Jaswal, Jagdip S. Raubenheimer, Monique Lam, Victoria H.M. Wagg, Cory S. Lopaschuk, Gary D. |
author_sort | Keung, Wendy |
collection | PubMed |
description | Impaired skeletal muscle fatty acid oxidation has been suggested to contribute to insulin resistance and glucose intolerance. However, increasing muscle fatty acid oxidation may cause a reciprocal decrease in glucose oxidation, which might impair insulin sensitivity and glucose tolerance. We therefore investigated what effect inhibition of mitochondrial fatty acid uptake has on whole-body glucose tolerance and insulin sensitivity in obese insulin-resistant mice. C57BL/6 mice were fed a high-fat diet (60% calories from fat) for 12 weeks to develop insulin resistance. Subsequent treatment of mice for 4 weeks with the carnitine palmitoyltransferase-1 inhibitor, oxfenicine (150 mg/kg i.p. daily), resulted in improved whole-body glucose tolerance and insulin sensitivity. Exercise capacity was increased in oxfenicine-treated mice, which was accompanied by an increased respiratory exchange ratio. In the gastrocnemius muscle, oxfenicine increased pyruvate dehydrogenase activity, membrane GLUT4 content, and insulin-stimulated Akt phosphorylation. Intramyocellular levels of lipid intermediates, including ceramide, long-chain acyl CoA, and diacylglycerol, were also decreased. Our results demonstrate that inhibition of mitochondrial fatty acid uptake improves insulin sensitivity in diet-induced obese mice. This is associated with increased carbohydrate utilization and improved insulin signaling in the skeletal muscle, suggestive of an operating Randle Cycle in muscle. |
format | Online Article Text |
id | pubmed-3581198 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | American Diabetes Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-35811982014-03-01 Inhibition of Carnitine Palmitoyltransferase-1 Activity Alleviates Insulin Resistance in Diet-Induced Obese Mice Keung, Wendy Ussher, John R. Jaswal, Jagdip S. Raubenheimer, Monique Lam, Victoria H.M. Wagg, Cory S. Lopaschuk, Gary D. Diabetes Metabolism Impaired skeletal muscle fatty acid oxidation has been suggested to contribute to insulin resistance and glucose intolerance. However, increasing muscle fatty acid oxidation may cause a reciprocal decrease in glucose oxidation, which might impair insulin sensitivity and glucose tolerance. We therefore investigated what effect inhibition of mitochondrial fatty acid uptake has on whole-body glucose tolerance and insulin sensitivity in obese insulin-resistant mice. C57BL/6 mice were fed a high-fat diet (60% calories from fat) for 12 weeks to develop insulin resistance. Subsequent treatment of mice for 4 weeks with the carnitine palmitoyltransferase-1 inhibitor, oxfenicine (150 mg/kg i.p. daily), resulted in improved whole-body glucose tolerance and insulin sensitivity. Exercise capacity was increased in oxfenicine-treated mice, which was accompanied by an increased respiratory exchange ratio. In the gastrocnemius muscle, oxfenicine increased pyruvate dehydrogenase activity, membrane GLUT4 content, and insulin-stimulated Akt phosphorylation. Intramyocellular levels of lipid intermediates, including ceramide, long-chain acyl CoA, and diacylglycerol, were also decreased. Our results demonstrate that inhibition of mitochondrial fatty acid uptake improves insulin sensitivity in diet-induced obese mice. This is associated with increased carbohydrate utilization and improved insulin signaling in the skeletal muscle, suggestive of an operating Randle Cycle in muscle. American Diabetes Association 2013-03 2013-02-14 /pmc/articles/PMC3581198/ /pubmed/23139350 http://dx.doi.org/10.2337/db12-0259 Text en © 2013 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. |
spellingShingle | Metabolism Keung, Wendy Ussher, John R. Jaswal, Jagdip S. Raubenheimer, Monique Lam, Victoria H.M. Wagg, Cory S. Lopaschuk, Gary D. Inhibition of Carnitine Palmitoyltransferase-1 Activity Alleviates Insulin Resistance in Diet-Induced Obese Mice |
title | Inhibition of Carnitine Palmitoyltransferase-1 Activity Alleviates Insulin Resistance in Diet-Induced Obese Mice |
title_full | Inhibition of Carnitine Palmitoyltransferase-1 Activity Alleviates Insulin Resistance in Diet-Induced Obese Mice |
title_fullStr | Inhibition of Carnitine Palmitoyltransferase-1 Activity Alleviates Insulin Resistance in Diet-Induced Obese Mice |
title_full_unstemmed | Inhibition of Carnitine Palmitoyltransferase-1 Activity Alleviates Insulin Resistance in Diet-Induced Obese Mice |
title_short | Inhibition of Carnitine Palmitoyltransferase-1 Activity Alleviates Insulin Resistance in Diet-Induced Obese Mice |
title_sort | inhibition of carnitine palmitoyltransferase-1 activity alleviates insulin resistance in diet-induced obese mice |
topic | Metabolism |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581198/ https://www.ncbi.nlm.nih.gov/pubmed/23139350 http://dx.doi.org/10.2337/db12-0259 |
work_keys_str_mv | AT keungwendy inhibitionofcarnitinepalmitoyltransferase1activityalleviatesinsulinresistanceindietinducedobesemice AT ussherjohnr inhibitionofcarnitinepalmitoyltransferase1activityalleviatesinsulinresistanceindietinducedobesemice AT jaswaljagdips inhibitionofcarnitinepalmitoyltransferase1activityalleviatesinsulinresistanceindietinducedobesemice AT raubenheimermonique inhibitionofcarnitinepalmitoyltransferase1activityalleviatesinsulinresistanceindietinducedobesemice AT lamvictoriahm inhibitionofcarnitinepalmitoyltransferase1activityalleviatesinsulinresistanceindietinducedobesemice AT waggcorys inhibitionofcarnitinepalmitoyltransferase1activityalleviatesinsulinresistanceindietinducedobesemice AT lopaschukgaryd inhibitionofcarnitinepalmitoyltransferase1activityalleviatesinsulinresistanceindietinducedobesemice |