Cargando…
Insights into the regulation of human CNV-miRNAs from the view of their target genes
BACKGROUND: microRNAs (miRNAs) represent a class of small (typically 22 nucleotides in length) non-coding RNAs that can degrade their target mRNAs or block their translation. Recent research showed that copy number alterations of miRNAs and their target genes are highly prevalent in cancers; however...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3582595/ https://www.ncbi.nlm.nih.gov/pubmed/23244579 http://dx.doi.org/10.1186/1471-2164-13-707 |
Sumario: | BACKGROUND: microRNAs (miRNAs) represent a class of small (typically 22 nucleotides in length) non-coding RNAs that can degrade their target mRNAs or block their translation. Recent research showed that copy number alterations of miRNAs and their target genes are highly prevalent in cancers; however, the evolutionary and biological functions of naturally existing copy number variable miRNAs (CNV-miRNAs) among individuals have not been studied extensively throughout the genome. RESULTS: In this study, we comprehensively analyzed the properties of genes regulated by CNV-miRNAs, and found that CNV-miRNAs tend to target a higher average number of genes and prefer to synergistically regulate the same genes; further, the targets of CNV-miRNAs tend to have higher variability of expression within and between populations. Finally, we found the targets of CNV-miRNAs are more likely to be differentially expressed among tissues and developmental stages, and participate in a wide range of cellular responses. CONCLUSIONS: Our analyses of CNV-miRNAs provide new insights into the impact of copy number variations on miRNA-mediated post-transcriptional networks. The deeper interpretation of patterns of gene expression variation and the functional characterization of CNV-miRNAs will help to broaden the current understanding of the molecular basis of human phenotypic diversity. |
---|