Cargando…
Short hairpin RNA targeting Twist1 suppresses cell proliferation and improves chemosensitivity to cisplatin in HeLa human cervical cancer cells
Development of multidrug resistance (MDR) remains a major hurdle to successful cancer chemotherapy and MDR1/P-gp overexpression is believed to be mainly responsible for MDR of tumor cells. Twist1, which is a highly conserved transcription factor that belongs to the family of basic helix-loop-helix p...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3583405/ https://www.ncbi.nlm.nih.gov/pubmed/22245869 http://dx.doi.org/10.3892/or.2012.1633 |
_version_ | 1782475420746121216 |
---|---|
author | ZHU, KEXIU CHEN, LIHONG HAN, XIAOBING WANG, JIA WANG, JUE |
author_facet | ZHU, KEXIU CHEN, LIHONG HAN, XIAOBING WANG, JIA WANG, JUE |
author_sort | ZHU, KEXIU |
collection | PubMed |
description | Development of multidrug resistance (MDR) remains a major hurdle to successful cancer chemotherapy and MDR1/P-gp overexpression is believed to be mainly responsible for MDR of tumor cells. Twist1, which is a highly conserved transcription factor that belongs to the family of basic helix-loop-helix proteins, has been shown to be a major regulator of the epithelial-mesenchymal transition (EMT), and therefore promotes carcinoma metastasis. Recently, a novel function of Twist1 was reported to confer radioresistance or chemoresistance in cervical cancer. However, mechanisms of such efficacy are not completely elucidated. In the present study, we firstly analyzed the relationship between Twist1 and MDR1/P-gp expression in human cervical cancer specimens and demonstrated a positive correlation between Twist1 and MDR1/P-gp expression in the same patient. Additionally, we provide the first evidence that silencing of Twist1 by RNAi downregulated MDR1/P-gp expression in HeLa cervical cancer cells, suppressed the cell proliferation, inhibited Rhodamine123 efflux activity of cells and sensitized cells to cisplatin treatment. Collectively, these findings suggest that Twist1-mediated modulation of MDR1/P-gp expression plays an important role in sensitization of cervical cancer cells to cisplatin, and also indicate a novel therapeutic strategy to overcome drug resistance through inactivation of Twist1 expression in cervical cancer. |
format | Online Article Text |
id | pubmed-3583405 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-35834052013-02-28 Short hairpin RNA targeting Twist1 suppresses cell proliferation and improves chemosensitivity to cisplatin in HeLa human cervical cancer cells ZHU, KEXIU CHEN, LIHONG HAN, XIAOBING WANG, JIA WANG, JUE Oncol Rep Articles Development of multidrug resistance (MDR) remains a major hurdle to successful cancer chemotherapy and MDR1/P-gp overexpression is believed to be mainly responsible for MDR of tumor cells. Twist1, which is a highly conserved transcription factor that belongs to the family of basic helix-loop-helix proteins, has been shown to be a major regulator of the epithelial-mesenchymal transition (EMT), and therefore promotes carcinoma metastasis. Recently, a novel function of Twist1 was reported to confer radioresistance or chemoresistance in cervical cancer. However, mechanisms of such efficacy are not completely elucidated. In the present study, we firstly analyzed the relationship between Twist1 and MDR1/P-gp expression in human cervical cancer specimens and demonstrated a positive correlation between Twist1 and MDR1/P-gp expression in the same patient. Additionally, we provide the first evidence that silencing of Twist1 by RNAi downregulated MDR1/P-gp expression in HeLa cervical cancer cells, suppressed the cell proliferation, inhibited Rhodamine123 efflux activity of cells and sensitized cells to cisplatin treatment. Collectively, these findings suggest that Twist1-mediated modulation of MDR1/P-gp expression plays an important role in sensitization of cervical cancer cells to cisplatin, and also indicate a novel therapeutic strategy to overcome drug resistance through inactivation of Twist1 expression in cervical cancer. D.A. Spandidos 2012-01-12 2012-04 /pmc/articles/PMC3583405/ /pubmed/22245869 http://dx.doi.org/10.3892/or.2012.1633 Text en Copyright © 2012, Spandidos Publications http://creativecommons.org/licenses/by/3.0 This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited. |
spellingShingle | Articles ZHU, KEXIU CHEN, LIHONG HAN, XIAOBING WANG, JIA WANG, JUE Short hairpin RNA targeting Twist1 suppresses cell proliferation and improves chemosensitivity to cisplatin in HeLa human cervical cancer cells |
title | Short hairpin RNA targeting Twist1 suppresses cell proliferation and improves chemosensitivity to cisplatin in HeLa human cervical cancer cells |
title_full | Short hairpin RNA targeting Twist1 suppresses cell proliferation and improves chemosensitivity to cisplatin in HeLa human cervical cancer cells |
title_fullStr | Short hairpin RNA targeting Twist1 suppresses cell proliferation and improves chemosensitivity to cisplatin in HeLa human cervical cancer cells |
title_full_unstemmed | Short hairpin RNA targeting Twist1 suppresses cell proliferation and improves chemosensitivity to cisplatin in HeLa human cervical cancer cells |
title_short | Short hairpin RNA targeting Twist1 suppresses cell proliferation and improves chemosensitivity to cisplatin in HeLa human cervical cancer cells |
title_sort | short hairpin rna targeting twist1 suppresses cell proliferation and improves chemosensitivity to cisplatin in hela human cervical cancer cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3583405/ https://www.ncbi.nlm.nih.gov/pubmed/22245869 http://dx.doi.org/10.3892/or.2012.1633 |
work_keys_str_mv | AT zhukexiu shorthairpinrnatargetingtwist1suppressescellproliferationandimproveschemosensitivitytocisplatininhelahumancervicalcancercells AT chenlihong shorthairpinrnatargetingtwist1suppressescellproliferationandimproveschemosensitivitytocisplatininhelahumancervicalcancercells AT hanxiaobing shorthairpinrnatargetingtwist1suppressescellproliferationandimproveschemosensitivitytocisplatininhelahumancervicalcancercells AT wangjia shorthairpinrnatargetingtwist1suppressescellproliferationandimproveschemosensitivitytocisplatininhelahumancervicalcancercells AT wangjue shorthairpinrnatargetingtwist1suppressescellproliferationandimproveschemosensitivitytocisplatininhelahumancervicalcancercells |