Cargando…

Human MHC Class I-restricted high avidity CD4(+) T cells generated by co-transfer of TCR and CD8 mediate efficient tumor rejection in vivo

In this study, we generated human MHC Class I-restricted CD4(+) T cells specific for Epstein-Barr virus (EBV) and cytomegalovirus (CMV), two herpesviridae associated with lymphoma, nasopharyngeal carcinoma and medulloblastoma, respectively. Retroviral transfer of virus-specific, HLA-A2-restricted TC...

Descripción completa

Detalles Bibliográficos
Autores principales: Xue, Shao-An, Gao, Liquan, Ahmadi, Maryam, Ghorashian, Sara, Barros, Rafael D, Pospori, Constandina, Holler, Angelika, Wright, Graham, Thomas, Sharyn, Topp, Max, Morris, Emma C, Stauss, Hans J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Landes Bioscience 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3583927/
https://www.ncbi.nlm.nih.gov/pubmed/23483821
http://dx.doi.org/10.4161/onci.22590
Descripción
Sumario:In this study, we generated human MHC Class I-restricted CD4(+) T cells specific for Epstein-Barr virus (EBV) and cytomegalovirus (CMV), two herpesviridae associated with lymphoma, nasopharyngeal carcinoma and medulloblastoma, respectively. Retroviral transfer of virus-specific, HLA-A2-restricted TCR-coding genes generated CD4(+) T cells that recognized HLA-A2/peptide multimers and produced cytokines when stimulated with MHC Class II-deficient cells presenting the relevant viral peptides in the context of HLA-A2. Peptide titration revealed that CD4(+) T cells had a 10-fold lower avidity than CD8(+) T cells expressing the same TCR. The impaired avidity of CD4(+) T cells was corrected by simultaneously transferring TCR- and CD8-coding genes. The CD8 co-receptor did not alter the cytokine signature of CD4(+) T cells, which remained distinct from that of CD8(+) T cells. Using the xenogeneic NOD/SCID mouse model, we demonstrated that human CD4(+) T cells expressing a specific TCR and CD8 can confer efficient protection against the growth of tumors expressing the EBV or CMV antigens recognized by the TCR. In summary, we describe a robust approach for generating therapeutic CD4(+) T cells capable of providing MHC Class I-restricted immunity against MHC Class II-negative tumors in vivo.