Cargando…
In vitro expansion of human glioblastoma cells at non-physiological oxygen tension irreversibly alters subsequent in vivo aggressiveness and AC133 expression
Among markers of glioblastoma initiating cells, AC133 has been shown to be associated with glioblastoma resistance and malignancy. Recently, it was demonstrated that increasing oxygen tension (pO(2)) down-regulated AC133 expression in glioblastoma cells in vitro. In order to better understand extrin...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584613/ https://www.ncbi.nlm.nih.gov/pubmed/22134773 http://dx.doi.org/10.3892/ijo.2011.1271 |
_version_ | 1782261046989291520 |
---|---|
author | BOURSEAU-GUILMAIN, ERIKA LEMAIRE, LAURENT GRIVEAU, AUDREY HERVOUET, ERIC VALLETTE, FRANÇOIS BERGER, FRANÇOIS MENEI, PHILIPPE BENOIT, JEAN-PIERRE WION, DIDIER GARCION, EMMANUEL |
author_facet | BOURSEAU-GUILMAIN, ERIKA LEMAIRE, LAURENT GRIVEAU, AUDREY HERVOUET, ERIC VALLETTE, FRANÇOIS BERGER, FRANÇOIS MENEI, PHILIPPE BENOIT, JEAN-PIERRE WION, DIDIER GARCION, EMMANUEL |
author_sort | BOURSEAU-GUILMAIN, ERIKA |
collection | PubMed |
description | Among markers of glioblastoma initiating cells, AC133 has been shown to be associated with glioblastoma resistance and malignancy. Recently, it was demonstrated that increasing oxygen tension (pO(2)) down-regulated AC133 expression in glioblastoma cells in vitro. In order to better understand extrinsic factor regulation of AC133, this work aimed to investigate the relationship between cell culture pO(2), AC133 expression, and tumor development and phenotype. Using treatments with CoCl(2) and HIF-1α shRNA knockdowns on non-sorted human primary glioblastoma cells cultured at low (3%) versus high (21%) oxygen tension, we established a responsibility for low pO(2) in the maintenance of high levels of AC133 expression, with a major but non-exclusive role for HIF-1α. We also demonstrated that human glioblastoma cells previously cultured under high oxygen tension can lose part of their aggressiveness when orthotopically engrafted in SCID mice or lead to tumors with distinct phenotypes and no re-expression of AC133. These observations showed that the specific pO(2) microenvironment irreversibly impacts glioblastoma cell phenotypes, highlighting the pertinence of culture conditions when extrapolating data from xenogenic models to human cells in their source environment. They also raised AC133 as a marker of non-exposure to oxygenated areas rather than a marker of aggressiveness or low pO(2) niches. |
format | Online Article Text |
id | pubmed-3584613 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-35846132013-03-04 In vitro expansion of human glioblastoma cells at non-physiological oxygen tension irreversibly alters subsequent in vivo aggressiveness and AC133 expression BOURSEAU-GUILMAIN, ERIKA LEMAIRE, LAURENT GRIVEAU, AUDREY HERVOUET, ERIC VALLETTE, FRANÇOIS BERGER, FRANÇOIS MENEI, PHILIPPE BENOIT, JEAN-PIERRE WION, DIDIER GARCION, EMMANUEL Int J Oncol Articles Among markers of glioblastoma initiating cells, AC133 has been shown to be associated with glioblastoma resistance and malignancy. Recently, it was demonstrated that increasing oxygen tension (pO(2)) down-regulated AC133 expression in glioblastoma cells in vitro. In order to better understand extrinsic factor regulation of AC133, this work aimed to investigate the relationship between cell culture pO(2), AC133 expression, and tumor development and phenotype. Using treatments with CoCl(2) and HIF-1α shRNA knockdowns on non-sorted human primary glioblastoma cells cultured at low (3%) versus high (21%) oxygen tension, we established a responsibility for low pO(2) in the maintenance of high levels of AC133 expression, with a major but non-exclusive role for HIF-1α. We also demonstrated that human glioblastoma cells previously cultured under high oxygen tension can lose part of their aggressiveness when orthotopically engrafted in SCID mice or lead to tumors with distinct phenotypes and no re-expression of AC133. These observations showed that the specific pO(2) microenvironment irreversibly impacts glioblastoma cell phenotypes, highlighting the pertinence of culture conditions when extrapolating data from xenogenic models to human cells in their source environment. They also raised AC133 as a marker of non-exposure to oxygenated areas rather than a marker of aggressiveness or low pO(2) niches. D.A. Spandidos 2011-11-23 /pmc/articles/PMC3584613/ /pubmed/22134773 http://dx.doi.org/10.3892/ijo.2011.1271 Text en Copyright © 2012, Spandidos Publications http://creativecommons.org/licenses/by/3.0 This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited. |
spellingShingle | Articles BOURSEAU-GUILMAIN, ERIKA LEMAIRE, LAURENT GRIVEAU, AUDREY HERVOUET, ERIC VALLETTE, FRANÇOIS BERGER, FRANÇOIS MENEI, PHILIPPE BENOIT, JEAN-PIERRE WION, DIDIER GARCION, EMMANUEL In vitro expansion of human glioblastoma cells at non-physiological oxygen tension irreversibly alters subsequent in vivo aggressiveness and AC133 expression |
title | In vitro expansion of human glioblastoma cells at non-physiological oxygen tension irreversibly alters subsequent in vivo aggressiveness and AC133 expression |
title_full | In vitro expansion of human glioblastoma cells at non-physiological oxygen tension irreversibly alters subsequent in vivo aggressiveness and AC133 expression |
title_fullStr | In vitro expansion of human glioblastoma cells at non-physiological oxygen tension irreversibly alters subsequent in vivo aggressiveness and AC133 expression |
title_full_unstemmed | In vitro expansion of human glioblastoma cells at non-physiological oxygen tension irreversibly alters subsequent in vivo aggressiveness and AC133 expression |
title_short | In vitro expansion of human glioblastoma cells at non-physiological oxygen tension irreversibly alters subsequent in vivo aggressiveness and AC133 expression |
title_sort | in vitro expansion of human glioblastoma cells at non-physiological oxygen tension irreversibly alters subsequent in vivo aggressiveness and ac133 expression |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3584613/ https://www.ncbi.nlm.nih.gov/pubmed/22134773 http://dx.doi.org/10.3892/ijo.2011.1271 |
work_keys_str_mv | AT bourseauguilmainerika invitroexpansionofhumanglioblastomacellsatnonphysiologicaloxygentensionirreversiblyalterssubsequentinvivoaggressivenessandac133expression AT lemairelaurent invitroexpansionofhumanglioblastomacellsatnonphysiologicaloxygentensionirreversiblyalterssubsequentinvivoaggressivenessandac133expression AT griveauaudrey invitroexpansionofhumanglioblastomacellsatnonphysiologicaloxygentensionirreversiblyalterssubsequentinvivoaggressivenessandac133expression AT hervoueteric invitroexpansionofhumanglioblastomacellsatnonphysiologicaloxygentensionirreversiblyalterssubsequentinvivoaggressivenessandac133expression AT vallettefrancois invitroexpansionofhumanglioblastomacellsatnonphysiologicaloxygentensionirreversiblyalterssubsequentinvivoaggressivenessandac133expression AT bergerfrancois invitroexpansionofhumanglioblastomacellsatnonphysiologicaloxygentensionirreversiblyalterssubsequentinvivoaggressivenessandac133expression AT meneiphilippe invitroexpansionofhumanglioblastomacellsatnonphysiologicaloxygentensionirreversiblyalterssubsequentinvivoaggressivenessandac133expression AT benoitjeanpierre invitroexpansionofhumanglioblastomacellsatnonphysiologicaloxygentensionirreversiblyalterssubsequentinvivoaggressivenessandac133expression AT wiondidier invitroexpansionofhumanglioblastomacellsatnonphysiologicaloxygentensionirreversiblyalterssubsequentinvivoaggressivenessandac133expression AT garcionemmanuel invitroexpansionofhumanglioblastomacellsatnonphysiologicaloxygentensionirreversiblyalterssubsequentinvivoaggressivenessandac133expression |