Cargando…
Enhancing Human Spermine Synthase Activity by Engineered Mutations
Spermine synthase (SMS) is an enzyme which function is to convert spermidine into spermine. It was shown that gene defects resulting in amino acid changes of the wild type SMS cause Snyder-Robinson syndrome, which is a mild-to-moderate mental disability associated with osteoporosis, facial asymmetry...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3585406/ https://www.ncbi.nlm.nih.gov/pubmed/23468611 http://dx.doi.org/10.1371/journal.pcbi.1002924 |
_version_ | 1782261165845381120 |
---|---|
author | Zhang, Zhe Zheng, Yueli Petukh, Margo Pegg, Anthony Ikeguchi, Yoshihiko Alexov, Emil |
author_facet | Zhang, Zhe Zheng, Yueli Petukh, Margo Pegg, Anthony Ikeguchi, Yoshihiko Alexov, Emil |
author_sort | Zhang, Zhe |
collection | PubMed |
description | Spermine synthase (SMS) is an enzyme which function is to convert spermidine into spermine. It was shown that gene defects resulting in amino acid changes of the wild type SMS cause Snyder-Robinson syndrome, which is a mild-to-moderate mental disability associated with osteoporosis, facial asymmetry, thin habitus, hypotonia, and a nonspecific movement disorder. These disease-causing missense mutations were demonstrated, both in silico and in vitro, to affect the wild type function of SMS by either destabilizing the SMS dimer/monomer or directly affecting the hydrogen bond network of the active site of SMS. In contrast to these studies, here we report an artificial engineering of a more efficient SMS variant by transferring sequence information from another organism. It is confirmed experimentally that the variant, bearing four amino acid substitutions, is catalytically more active than the wild type. The increased functionality is attributed to enhanced monomer stability, lowering the pKa of proton donor catalytic residue, optimized spatial distribution of the electrostatic potential around the SMS with respect to substrates, and increase of the frequency of mechanical vibration of the clefts presumed to be the gates toward the active sites. The study demonstrates that wild type SMS is not particularly evolutionarily optimized with respect to the reaction spermidine → spermine. Having in mind that currently there are no variations (non-synonymous single nucleotide polymorphism, nsSNP) detected in healthy individuals, it can be speculated that the human SMS function is precisely tuned toward its wild type and any deviation is unwanted and disease-causing. |
format | Online Article Text |
id | pubmed-3585406 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35854062013-03-06 Enhancing Human Spermine Synthase Activity by Engineered Mutations Zhang, Zhe Zheng, Yueli Petukh, Margo Pegg, Anthony Ikeguchi, Yoshihiko Alexov, Emil PLoS Comput Biol Research Article Spermine synthase (SMS) is an enzyme which function is to convert spermidine into spermine. It was shown that gene defects resulting in amino acid changes of the wild type SMS cause Snyder-Robinson syndrome, which is a mild-to-moderate mental disability associated with osteoporosis, facial asymmetry, thin habitus, hypotonia, and a nonspecific movement disorder. These disease-causing missense mutations were demonstrated, both in silico and in vitro, to affect the wild type function of SMS by either destabilizing the SMS dimer/monomer or directly affecting the hydrogen bond network of the active site of SMS. In contrast to these studies, here we report an artificial engineering of a more efficient SMS variant by transferring sequence information from another organism. It is confirmed experimentally that the variant, bearing four amino acid substitutions, is catalytically more active than the wild type. The increased functionality is attributed to enhanced monomer stability, lowering the pKa of proton donor catalytic residue, optimized spatial distribution of the electrostatic potential around the SMS with respect to substrates, and increase of the frequency of mechanical vibration of the clefts presumed to be the gates toward the active sites. The study demonstrates that wild type SMS is not particularly evolutionarily optimized with respect to the reaction spermidine → spermine. Having in mind that currently there are no variations (non-synonymous single nucleotide polymorphism, nsSNP) detected in healthy individuals, it can be speculated that the human SMS function is precisely tuned toward its wild type and any deviation is unwanted and disease-causing. Public Library of Science 2013-02-28 /pmc/articles/PMC3585406/ /pubmed/23468611 http://dx.doi.org/10.1371/journal.pcbi.1002924 Text en © 2013 Zhang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Zhang, Zhe Zheng, Yueli Petukh, Margo Pegg, Anthony Ikeguchi, Yoshihiko Alexov, Emil Enhancing Human Spermine Synthase Activity by Engineered Mutations |
title | Enhancing Human Spermine Synthase Activity by Engineered Mutations |
title_full | Enhancing Human Spermine Synthase Activity by Engineered Mutations |
title_fullStr | Enhancing Human Spermine Synthase Activity by Engineered Mutations |
title_full_unstemmed | Enhancing Human Spermine Synthase Activity by Engineered Mutations |
title_short | Enhancing Human Spermine Synthase Activity by Engineered Mutations |
title_sort | enhancing human spermine synthase activity by engineered mutations |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3585406/ https://www.ncbi.nlm.nih.gov/pubmed/23468611 http://dx.doi.org/10.1371/journal.pcbi.1002924 |
work_keys_str_mv | AT zhangzhe enhancinghumansperminesynthaseactivitybyengineeredmutations AT zhengyueli enhancinghumansperminesynthaseactivitybyengineeredmutations AT petukhmargo enhancinghumansperminesynthaseactivitybyengineeredmutations AT pegganthony enhancinghumansperminesynthaseactivitybyengineeredmutations AT ikeguchiyoshihiko enhancinghumansperminesynthaseactivitybyengineeredmutations AT alexovemil enhancinghumansperminesynthaseactivitybyengineeredmutations |