Cargando…

A Structured-Inquiry Approach to Teaching Neurophysiology Using Computer Simulation

Computer simulation is a valuable tool for teaching the fundamentals of neurophysiology in undergraduate laboratories where time and equipment limitations restrict the amount of course content that can be delivered through hands-on interaction. However, students often find such exercises to be tedio...

Descripción completa

Detalles Bibliográficos
Autor principal: Crisp, Kevin M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Faculty for Undergraduate Neuroscience 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3592748/
https://www.ncbi.nlm.nih.gov/pubmed/23494064
Descripción
Sumario:Computer simulation is a valuable tool for teaching the fundamentals of neurophysiology in undergraduate laboratories where time and equipment limitations restrict the amount of course content that can be delivered through hands-on interaction. However, students often find such exercises to be tedious and unstimulating. In an effort to engage students in the use of computational modeling while developing a deeper understanding of neurophysiology, an attempt was made to use an educational neurosimulation environment as the basis for a novel, inquiry-based research project. During the semester, students in the class wrote a research proposal, used the Neurodynamix II simulator to generate a large data set, analyzed their modeling results statistically, and presented their findings at the Midbrains Neuroscience Consortium undergraduate poster session. Learning was assessed in the form of a series of short term papers and two 10-min in-class writing responses to the open-ended question, “How do ion channels influence neuronal firing?”, which they completed on weeks 6 and 15 of the semester. Students’ answers to this question showed a deeper understanding of neuronal excitability after the project; their term papers revealed evidence of critical thinking about computational modeling and neuronal excitability. Suggestions for the adaptation of this structured-inquiry approach into shorter term lab experiences are discussed.