Cargando…
Structural basis for duplex RNA recognition and cleavage by Archaeoglobus fulgidus C3PO
Oligomeric complexes of Trax and Translin proteins, known as C3POs, participate in a variety of eukaryotic nucleic acid metabolism pathways including RNAi and tRNA processing. In RNAi in humans and Drosophila, C3PO activates pre-RISC by removing the passenger strand of the siRNA precursor duplex usi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597040/ https://www.ncbi.nlm.nih.gov/pubmed/23353787 http://dx.doi.org/10.1038/nsmb.2487 |
Sumario: | Oligomeric complexes of Trax and Translin proteins, known as C3POs, participate in a variety of eukaryotic nucleic acid metabolism pathways including RNAi and tRNA processing. In RNAi in humans and Drosophila, C3PO activates pre-RISC by removing the passenger strand of the siRNA precursor duplex using nuclease activity present in Trax. It is not known how C3POs engage with nucleic acid substrates. Here we identify a single protein from Archaeoglobus fulgidus that assembles into an octamer with striking similarity to human C3PO. The structure in complex with duplex RNA reveals that the octamer entirely encapsulates a single thirteen base-pair RNA duplex inside a large inner cavity. Trax-like subunit catalytic sites target opposite strands of the duplex for cleavage, separated by seven base pairs. The structure provides insight into the mechanism of RNA recognition and cleavage by an archaeal C3PO-like complex. |
---|