Cargando…

Cellular exposure to muscle relaxants and propofol could lead to genomic instability in vitro

Anesthesia is widely used in several medical settings and accepted as safe. However, there is some evidence that anesthetic agents can induce genomic changes leading to neural degeneration or apoptosis. Although chromosomal changes have not been observed in vivo, this is most likely due to DNA repai...

Descripción completa

Detalles Bibliográficos
Autores principales: Coleman, Allen Edward, McNeil, Nicole, Kovalchuck, Alexander Leonidovich, Wangsa, Dara, Ried, Thomas, Wang, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Editorial Department of Journal of Biomedical Research 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597328/
https://www.ncbi.nlm.nih.gov/pubmed/23554740
http://dx.doi.org/10.1016/S1674-8301(12)60021-9
Descripción
Sumario:Anesthesia is widely used in several medical settings and accepted as safe. However, there is some evidence that anesthetic agents can induce genomic changes leading to neural degeneration or apoptosis. Although chromosomal changes have not been observed in vivo, this is most likely due to DNA repair mechanisms, apoptosis, or cellular senescence. Potential chromosomal alterations after exposure to common anesthetic agents may be relevant in patients with genomic instability syndromes or with aggressive treatment of malignancies. In this study, the P388 murine B cells were cultured in vitro, and spectral karyotyping (SKY) was utilized to uncover genome-wide changes. Clinically relevant doses of cisatracurium and propofol increased structural and numerical chromosomal instability. These results may be relevant in patients with underlying chromosomal instability syndromes or concurrently being exposed to chemotherapeutic agents. Future studies may include utilization of stimulated peripheral blood lymphocytes to further confirm the significance of these results.