Cargando…
Identification of a novel human mitochondrial endo-/exonuclease Ddk1/c20orf72 necessary for maintenance of proper 7S DNA levels
Although the human mitochondrial genome has been investigated for several decades, the proteins responsible for its replication and expression, especially nucleolytic enzymes, are poorly described. Here, we characterized a novel putative PD-(D/E)XK nuclease encoded by the human C20orf72 gene named D...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597694/ https://www.ncbi.nlm.nih.gov/pubmed/23358826 http://dx.doi.org/10.1093/nar/gkt029 |
_version_ | 1782262678168797184 |
---|---|
author | Szczesny, Roman J. Hejnowicz, Monika S. Steczkiewicz, Kamil Muszewska, Anna Borowski, Lukasz S. Ginalski, Krzysztof Dziembowski, Andrzej |
author_facet | Szczesny, Roman J. Hejnowicz, Monika S. Steczkiewicz, Kamil Muszewska, Anna Borowski, Lukasz S. Ginalski, Krzysztof Dziembowski, Andrzej |
author_sort | Szczesny, Roman J. |
collection | PubMed |
description | Although the human mitochondrial genome has been investigated for several decades, the proteins responsible for its replication and expression, especially nucleolytic enzymes, are poorly described. Here, we characterized a novel putative PD-(D/E)XK nuclease encoded by the human C20orf72 gene named Ddk1 for its predicted catalytic residues. We show that Ddk1 is a mitochondrially localized metal-dependent DNase lacking detectable ribonuclease activity. Ddk1 degrades DNA mainly in a 3′–5′ direction with a strong preference for single-stranded DNA. Interestingly, Ddk1 requires free ends for its activity and does not degrade circular substrates. In addition, when a chimeric RNA–DNA substrate is provided, Ddk1 can slide over the RNA fragment and digest DNA endonucleolytically. Although the levels of the mitochondrial DNA are unchanged on RNAi-mediated depletion of Ddk1, the mitochondrial single-stranded DNA molecule (7S DNA) accumulates. On the other hand, overexperssion of Ddk1 decreases the levels of 7S DNA, suggesting an important role of the protein in 7S DNA regulation. We propose a structural model of Ddk1 and discuss its similarity to other PD-(D/E)XK superfamily members. |
format | Online Article Text |
id | pubmed-3597694 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-35976942013-03-15 Identification of a novel human mitochondrial endo-/exonuclease Ddk1/c20orf72 necessary for maintenance of proper 7S DNA levels Szczesny, Roman J. Hejnowicz, Monika S. Steczkiewicz, Kamil Muszewska, Anna Borowski, Lukasz S. Ginalski, Krzysztof Dziembowski, Andrzej Nucleic Acids Res Genome Integrity, Repair and Replication Although the human mitochondrial genome has been investigated for several decades, the proteins responsible for its replication and expression, especially nucleolytic enzymes, are poorly described. Here, we characterized a novel putative PD-(D/E)XK nuclease encoded by the human C20orf72 gene named Ddk1 for its predicted catalytic residues. We show that Ddk1 is a mitochondrially localized metal-dependent DNase lacking detectable ribonuclease activity. Ddk1 degrades DNA mainly in a 3′–5′ direction with a strong preference for single-stranded DNA. Interestingly, Ddk1 requires free ends for its activity and does not degrade circular substrates. In addition, when a chimeric RNA–DNA substrate is provided, Ddk1 can slide over the RNA fragment and digest DNA endonucleolytically. Although the levels of the mitochondrial DNA are unchanged on RNAi-mediated depletion of Ddk1, the mitochondrial single-stranded DNA molecule (7S DNA) accumulates. On the other hand, overexperssion of Ddk1 decreases the levels of 7S DNA, suggesting an important role of the protein in 7S DNA regulation. We propose a structural model of Ddk1 and discuss its similarity to other PD-(D/E)XK superfamily members. Oxford University Press 2013-03 2013-01-25 /pmc/articles/PMC3597694/ /pubmed/23358826 http://dx.doi.org/10.1093/nar/gkt029 Text en © The Author(s) 2013. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Genome Integrity, Repair and Replication Szczesny, Roman J. Hejnowicz, Monika S. Steczkiewicz, Kamil Muszewska, Anna Borowski, Lukasz S. Ginalski, Krzysztof Dziembowski, Andrzej Identification of a novel human mitochondrial endo-/exonuclease Ddk1/c20orf72 necessary for maintenance of proper 7S DNA levels |
title | Identification of a novel human mitochondrial endo-/exonuclease Ddk1/c20orf72 necessary for maintenance of proper 7S DNA levels |
title_full | Identification of a novel human mitochondrial endo-/exonuclease Ddk1/c20orf72 necessary for maintenance of proper 7S DNA levels |
title_fullStr | Identification of a novel human mitochondrial endo-/exonuclease Ddk1/c20orf72 necessary for maintenance of proper 7S DNA levels |
title_full_unstemmed | Identification of a novel human mitochondrial endo-/exonuclease Ddk1/c20orf72 necessary for maintenance of proper 7S DNA levels |
title_short | Identification of a novel human mitochondrial endo-/exonuclease Ddk1/c20orf72 necessary for maintenance of proper 7S DNA levels |
title_sort | identification of a novel human mitochondrial endo-/exonuclease ddk1/c20orf72 necessary for maintenance of proper 7s dna levels |
topic | Genome Integrity, Repair and Replication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597694/ https://www.ncbi.nlm.nih.gov/pubmed/23358826 http://dx.doi.org/10.1093/nar/gkt029 |
work_keys_str_mv | AT szczesnyromanj identificationofanovelhumanmitochondrialendoexonucleaseddk1c20orf72necessaryformaintenanceofproper7sdnalevels AT hejnowiczmonikas identificationofanovelhumanmitochondrialendoexonucleaseddk1c20orf72necessaryformaintenanceofproper7sdnalevels AT steczkiewiczkamil identificationofanovelhumanmitochondrialendoexonucleaseddk1c20orf72necessaryformaintenanceofproper7sdnalevels AT muszewskaanna identificationofanovelhumanmitochondrialendoexonucleaseddk1c20orf72necessaryformaintenanceofproper7sdnalevels AT borowskilukaszs identificationofanovelhumanmitochondrialendoexonucleaseddk1c20orf72necessaryformaintenanceofproper7sdnalevels AT ginalskikrzysztof identificationofanovelhumanmitochondrialendoexonucleaseddk1c20orf72necessaryformaintenanceofproper7sdnalevels AT dziembowskiandrzej identificationofanovelhumanmitochondrialendoexonucleaseddk1c20orf72necessaryformaintenanceofproper7sdnalevels |