Cargando…
Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications
Recent development of trilayer graphene nanoribbon Schottky-barrier field-effect transistors (FETs) will be governed by transistor electrostatics and quantum effects that impose scaling limits like those of Si metal-oxide-semiconductor field-effect transistors. The current–voltage characteristic of...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3602287/ https://www.ncbi.nlm.nih.gov/pubmed/23363692 http://dx.doi.org/10.1186/1556-276X-8-55 |
_version_ | 1782263554415525888 |
---|---|
author | Rahmani, Meisam Ahmadi, Mohammad Taghi Abadi, Hediyeh Karimi Feiz Saeidmanesh, Mehdi Akbari, Elnaz Ismail, Razali |
author_facet | Rahmani, Meisam Ahmadi, Mohammad Taghi Abadi, Hediyeh Karimi Feiz Saeidmanesh, Mehdi Akbari, Elnaz Ismail, Razali |
author_sort | Rahmani, Meisam |
collection | PubMed |
description | Recent development of trilayer graphene nanoribbon Schottky-barrier field-effect transistors (FETs) will be governed by transistor electrostatics and quantum effects that impose scaling limits like those of Si metal-oxide-semiconductor field-effect transistors. The current–voltage characteristic of a Schottky-barrier FET has been studied as a function of physical parameters such as effective mass, graphene nanoribbon length, gate insulator thickness, and electrical parameters such as Schottky barrier height and applied bias voltage. In this paper, the scaling behaviors of a Schottky-barrier FET using trilayer graphene nanoribbon are studied and analytically modeled. A novel analytical method is also presented for describing a switch in a Schottky-contact double-gate trilayer graphene nanoribbon FET. In the proposed model, different stacking arrangements of trilayer graphene nanoribbon are assumed as metal and semiconductor contacts to form a Schottky transistor. Based on this assumption, an analytical model and numerical solution of the junction current–voltage are presented in which the applied bias voltage and channel length dependence characteristics are highlighted. The model is then compared with other types of transistors. The developed model can assist in comprehending experiments involving graphene nanoribbon Schottky-barrier FETs. It is demonstrated that the proposed structure exhibits negligible short-channel effects, an improved on-current, realistic threshold voltage, and opposite subthreshold slope and meets the International Technology Roadmap for Semiconductors near-term guidelines. Finally, the results showed that there is a fast transient between on-off states. In other words, the suggested model can be used as a high-speed switch where the value of subthreshold slope is small and thus leads to less power consumption. |
format | Online Article Text |
id | pubmed-3602287 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Springer |
record_format | MEDLINE/PubMed |
spelling | pubmed-36022872013-03-20 Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications Rahmani, Meisam Ahmadi, Mohammad Taghi Abadi, Hediyeh Karimi Feiz Saeidmanesh, Mehdi Akbari, Elnaz Ismail, Razali Nanoscale Res Lett Nano Idea Recent development of trilayer graphene nanoribbon Schottky-barrier field-effect transistors (FETs) will be governed by transistor electrostatics and quantum effects that impose scaling limits like those of Si metal-oxide-semiconductor field-effect transistors. The current–voltage characteristic of a Schottky-barrier FET has been studied as a function of physical parameters such as effective mass, graphene nanoribbon length, gate insulator thickness, and electrical parameters such as Schottky barrier height and applied bias voltage. In this paper, the scaling behaviors of a Schottky-barrier FET using trilayer graphene nanoribbon are studied and analytically modeled. A novel analytical method is also presented for describing a switch in a Schottky-contact double-gate trilayer graphene nanoribbon FET. In the proposed model, different stacking arrangements of trilayer graphene nanoribbon are assumed as metal and semiconductor contacts to form a Schottky transistor. Based on this assumption, an analytical model and numerical solution of the junction current–voltage are presented in which the applied bias voltage and channel length dependence characteristics are highlighted. The model is then compared with other types of transistors. The developed model can assist in comprehending experiments involving graphene nanoribbon Schottky-barrier FETs. It is demonstrated that the proposed structure exhibits negligible short-channel effects, an improved on-current, realistic threshold voltage, and opposite subthreshold slope and meets the International Technology Roadmap for Semiconductors near-term guidelines. Finally, the results showed that there is a fast transient between on-off states. In other words, the suggested model can be used as a high-speed switch where the value of subthreshold slope is small and thus leads to less power consumption. Springer 2013-01-30 /pmc/articles/PMC3602287/ /pubmed/23363692 http://dx.doi.org/10.1186/1556-276X-8-55 Text en Copyright ©2013 Rahmani et al.; licensee Springer. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Nano Idea Rahmani, Meisam Ahmadi, Mohammad Taghi Abadi, Hediyeh Karimi Feiz Saeidmanesh, Mehdi Akbari, Elnaz Ismail, Razali Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications |
title | Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications |
title_full | Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications |
title_fullStr | Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications |
title_full_unstemmed | Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications |
title_short | Analytical modeling of trilayer graphene nanoribbon Schottky-barrier FET for high-speed switching applications |
title_sort | analytical modeling of trilayer graphene nanoribbon schottky-barrier fet for high-speed switching applications |
topic | Nano Idea |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3602287/ https://www.ncbi.nlm.nih.gov/pubmed/23363692 http://dx.doi.org/10.1186/1556-276X-8-55 |
work_keys_str_mv | AT rahmanimeisam analyticalmodelingoftrilayergraphenenanoribbonschottkybarrierfetforhighspeedswitchingapplications AT ahmadimohammadtaghi analyticalmodelingoftrilayergraphenenanoribbonschottkybarrierfetforhighspeedswitchingapplications AT abadihediyehkarimifeiz analyticalmodelingoftrilayergraphenenanoribbonschottkybarrierfetforhighspeedswitchingapplications AT saeidmaneshmehdi analyticalmodelingoftrilayergraphenenanoribbonschottkybarrierfetforhighspeedswitchingapplications AT akbarielnaz analyticalmodelingoftrilayergraphenenanoribbonschottkybarrierfetforhighspeedswitchingapplications AT ismailrazali analyticalmodelingoftrilayergraphenenanoribbonschottkybarrierfetforhighspeedswitchingapplications |