Cargando…

CRL2(LRR-1) E3-Ligase Regulates Proliferation and Progression through Meiosis in the Caenorhabditis elegans Germline

The ubiquitin-proteolytic system controls the stability of proteins in space and time. In this study, using a temperature-sensitive mutant allele of the cul-2 gene, we show that CRL2(LRR-1) (CUL-2 RING E3 ubiquitin-ligase and the Leucine Rich Repeat 1 substrate recognition subunit) acts at multiple...

Descripción completa

Detalles Bibliográficos
Autores principales: Burger, Julien, Merlet, Jorge, Tavernier, Nicolas, Richaudeau, Bénédicte, Arnold, Andreas, Ciosk, Rafal, Bowerman, Bruce, Pintard, Lionel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3610609/
https://www.ncbi.nlm.nih.gov/pubmed/23555289
http://dx.doi.org/10.1371/journal.pgen.1003375
Descripción
Sumario:The ubiquitin-proteolytic system controls the stability of proteins in space and time. In this study, using a temperature-sensitive mutant allele of the cul-2 gene, we show that CRL2(LRR-1) (CUL-2 RING E3 ubiquitin-ligase and the Leucine Rich Repeat 1 substrate recognition subunit) acts at multiple levels to control germline development. CRL2(LRR-1) promotes germ cell proliferation by counteracting the DNA replication ATL-1 checkpoint pathway. CRL2(LRR-1) also participates in the mitotic proliferation/meiotic entry decision, presumably controlling the stability of meiotic promoting factors in the mitotic zone of the germline. Finally, CRL2(LRR-1) inhibits the first steps of meiotic prophase by targeting in mitotic germ cells degradation of the HORMA domain-containing protein HTP-3, required for loading synaptonemal complex components onto meiotic chromosomes. Given its widespread evolutionary conservation, CUL-2 may similarly regulate germline development in other organisms as well.