Cargando…
Neutron-encoded mass signatures for multi-plexed proteome quantification
We describe a protein quantification method that exploits the subtle mass differences caused by neutron-binding energy variation in stable isotopes. These mass differences are synthetically encoded into amino acids and incorporated into yeast and mouse proteins with metabolic labeling; analysis with...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3612390/ https://www.ncbi.nlm.nih.gov/pubmed/23435260 http://dx.doi.org/10.1038/nmeth.2378 |
Sumario: | We describe a protein quantification method that exploits the subtle mass differences caused by neutron-binding energy variation in stable isotopes. These mass differences are synthetically encoded into amino acids and incorporated into yeast and mouse proteins with metabolic labeling; analysis with high mass resolution (>100,000) reveals the isotopologue-embedded peptide signals permitting quantification. We conclude neutron encoding will enable high levels of multi-plexing (> 10) with high dynamic range and accuracy. |
---|