Cargando…
Quantitative Design of Regulatory Elements Based on High-Precision Strength Prediction Using Artificial Neural Network
Accurate and controllable regulatory elements such as promoters and ribosome binding sites (RBSs) are indispensable tools to quantitatively regulate gene expression for rational pathway engineering. Therefore, de novo designing regulatory elements is brought back to the forefront of synthetic biolog...
Autores principales: | Meng, Hailin, Wang, Jianfeng, Xiong, Zhiqiang, Xu, Feng, Zhao, Guoping, Wang, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3613377/ https://www.ncbi.nlm.nih.gov/pubmed/23560087 http://dx.doi.org/10.1371/journal.pone.0060288 |
Ejemplares similares
-
Artificial neural networks for quantitative online NMR spectroscopy
por: Kern, Simon, et al.
Publicado: (2020) -
Application of artificial neural network modeling techniques to signal strength computation
por: Igwe, K.C., et al.
Publicado: (2021) -
Principal component analysis–artificial neural network-based model for predicting the static strength of seasonally frozen soils
por: Sun, Yiqiang, et al.
Publicado: (2023) -
Modelling the Influence of Waste Rubber on Compressive Strength of Concrete by Artificial Neural Networks
por: Hadzima-Nyarko, Marijana, et al.
Publicado: (2019) -
Prediction of the Compressive Strength of Recycled Aggregate Concrete Based on Artificial Neural Network
por: Bu, Liangtao, et al.
Publicado: (2021)