Cargando…
Exploring the Chemical Space around 8-Mercaptoguanine as a Route to New Inhibitors of the Folate Biosynthesis Enzyme HPPK
As the second essential enzyme of the folate biosynthetic pathway, the potential antimicrobial target, HPPK (6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase), catalyzes the Mg(2+-)dependant transfer of pyrophosphate from the cofactor (ATP) to the substrate, 6-hydroxymethyl-7,8-dihydropterin. Rec...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614987/ https://www.ncbi.nlm.nih.gov/pubmed/23565155 http://dx.doi.org/10.1371/journal.pone.0059535 |
_version_ | 1782264960594739200 |
---|---|
author | Chhabra, Sandeep Barlow, Nicholas Dolezal, Olan Hattarki, Meghan K. Newman, Janet Peat, Thomas S. Graham, Bim Swarbrick, James D. |
author_facet | Chhabra, Sandeep Barlow, Nicholas Dolezal, Olan Hattarki, Meghan K. Newman, Janet Peat, Thomas S. Graham, Bim Swarbrick, James D. |
author_sort | Chhabra, Sandeep |
collection | PubMed |
description | As the second essential enzyme of the folate biosynthetic pathway, the potential antimicrobial target, HPPK (6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase), catalyzes the Mg(2+-)dependant transfer of pyrophosphate from the cofactor (ATP) to the substrate, 6-hydroxymethyl-7,8-dihydropterin. Recently, we showed that 8-mercaptoguanine (8-MG) bound at the substrate site (K(D) ∼13 µM), inhibited the S. aureus enzyme (SaHPPK) (IC(50) ∼ 41 µM), and determined the structure of the SaHPPK/8-MG complex. Here we present the synthesis of a series of guanine derivatives, together with their HPPK binding affinities, as determined by SPR and ITC analysis. The binding mode of the most potent was investigated using 2D NMR spectroscopy and X-ray crystallography. The results indicate, firstly, that the SH group of 8-MG makes a significant contribution to the free energy of binding. Secondly, direct N (9) substitution, or tautomerization arising from N (7) substitution in some cases, leads to a dramatic reduction in affinity due to loss of a critical N (9)-H···Val46 hydrogen bond, combined with the limited space available around the N (9) position. The water-filled pocket under the N (7) position is significantly more tolerant of substitution, with a hydroxyl ethyl 8-MG derivative attached to N (7) (compound 21a) exhibiting an affinity for the apo enzyme comparable to the parent compound (K(D) ∼ 12 µM). In contrast to 8-MG, however, 21a displays competitive binding with the ATP cofactor, as judged by NMR and SPR analysis. The 1.85 Å X-ray structure of the SaHPPK/21a complex confirms that extension from the N (7) position towards the Mg(2+)-binding site, which affords the only tractable route out from the pterin-binding pocket. Promising strategies for the creation of more potent binders might therefore include the introduction of groups capable of interacting with the Mg(2+) centres or Mg(2+) -binding residues, as well as the development of bitopic inhibitors featuring 8-MG linked to a moiety targeting the ATP cofactor binding site. |
format | Online Article Text |
id | pubmed-3614987 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36149872013-04-05 Exploring the Chemical Space around 8-Mercaptoguanine as a Route to New Inhibitors of the Folate Biosynthesis Enzyme HPPK Chhabra, Sandeep Barlow, Nicholas Dolezal, Olan Hattarki, Meghan K. Newman, Janet Peat, Thomas S. Graham, Bim Swarbrick, James D. PLoS One Research Article As the second essential enzyme of the folate biosynthetic pathway, the potential antimicrobial target, HPPK (6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase), catalyzes the Mg(2+-)dependant transfer of pyrophosphate from the cofactor (ATP) to the substrate, 6-hydroxymethyl-7,8-dihydropterin. Recently, we showed that 8-mercaptoguanine (8-MG) bound at the substrate site (K(D) ∼13 µM), inhibited the S. aureus enzyme (SaHPPK) (IC(50) ∼ 41 µM), and determined the structure of the SaHPPK/8-MG complex. Here we present the synthesis of a series of guanine derivatives, together with their HPPK binding affinities, as determined by SPR and ITC analysis. The binding mode of the most potent was investigated using 2D NMR spectroscopy and X-ray crystallography. The results indicate, firstly, that the SH group of 8-MG makes a significant contribution to the free energy of binding. Secondly, direct N (9) substitution, or tautomerization arising from N (7) substitution in some cases, leads to a dramatic reduction in affinity due to loss of a critical N (9)-H···Val46 hydrogen bond, combined with the limited space available around the N (9) position. The water-filled pocket under the N (7) position is significantly more tolerant of substitution, with a hydroxyl ethyl 8-MG derivative attached to N (7) (compound 21a) exhibiting an affinity for the apo enzyme comparable to the parent compound (K(D) ∼ 12 µM). In contrast to 8-MG, however, 21a displays competitive binding with the ATP cofactor, as judged by NMR and SPR analysis. The 1.85 Å X-ray structure of the SaHPPK/21a complex confirms that extension from the N (7) position towards the Mg(2+)-binding site, which affords the only tractable route out from the pterin-binding pocket. Promising strategies for the creation of more potent binders might therefore include the introduction of groups capable of interacting with the Mg(2+) centres or Mg(2+) -binding residues, as well as the development of bitopic inhibitors featuring 8-MG linked to a moiety targeting the ATP cofactor binding site. Public Library of Science 2013-04-02 /pmc/articles/PMC3614987/ /pubmed/23565155 http://dx.doi.org/10.1371/journal.pone.0059535 Text en © 2013 Chhabra et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Chhabra, Sandeep Barlow, Nicholas Dolezal, Olan Hattarki, Meghan K. Newman, Janet Peat, Thomas S. Graham, Bim Swarbrick, James D. Exploring the Chemical Space around 8-Mercaptoguanine as a Route to New Inhibitors of the Folate Biosynthesis Enzyme HPPK |
title | Exploring the Chemical Space around 8-Mercaptoguanine as a Route to New Inhibitors of the Folate Biosynthesis Enzyme HPPK |
title_full | Exploring the Chemical Space around 8-Mercaptoguanine as a Route to New Inhibitors of the Folate Biosynthesis Enzyme HPPK |
title_fullStr | Exploring the Chemical Space around 8-Mercaptoguanine as a Route to New Inhibitors of the Folate Biosynthesis Enzyme HPPK |
title_full_unstemmed | Exploring the Chemical Space around 8-Mercaptoguanine as a Route to New Inhibitors of the Folate Biosynthesis Enzyme HPPK |
title_short | Exploring the Chemical Space around 8-Mercaptoguanine as a Route to New Inhibitors of the Folate Biosynthesis Enzyme HPPK |
title_sort | exploring the chemical space around 8-mercaptoguanine as a route to new inhibitors of the folate biosynthesis enzyme hppk |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614987/ https://www.ncbi.nlm.nih.gov/pubmed/23565155 http://dx.doi.org/10.1371/journal.pone.0059535 |
work_keys_str_mv | AT chhabrasandeep exploringthechemicalspacearound8mercaptoguanineasaroutetonewinhibitorsofthefolatebiosynthesisenzymehppk AT barlownicholas exploringthechemicalspacearound8mercaptoguanineasaroutetonewinhibitorsofthefolatebiosynthesisenzymehppk AT dolezalolan exploringthechemicalspacearound8mercaptoguanineasaroutetonewinhibitorsofthefolatebiosynthesisenzymehppk AT hattarkimeghank exploringthechemicalspacearound8mercaptoguanineasaroutetonewinhibitorsofthefolatebiosynthesisenzymehppk AT newmanjanet exploringthechemicalspacearound8mercaptoguanineasaroutetonewinhibitorsofthefolatebiosynthesisenzymehppk AT peatthomass exploringthechemicalspacearound8mercaptoguanineasaroutetonewinhibitorsofthefolatebiosynthesisenzymehppk AT grahambim exploringthechemicalspacearound8mercaptoguanineasaroutetonewinhibitorsofthefolatebiosynthesisenzymehppk AT swarbrickjamesd exploringthechemicalspacearound8mercaptoguanineasaroutetonewinhibitorsofthefolatebiosynthesisenzymehppk |