Cargando…
Actin Polymerization Negatively Regulates p53 Function by Impairing Its Nuclear Import in Response to DNA Damage
Actin, one of the most evolutionarily conservative proteins in eukaryotes, is distributed both in the cytoplasm and the nucleus, and its dynamics plays important roles in numerous cellular processes. Previous evidence has shown that actin interacts with p53 and this interaction increases in the proc...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3615075/ https://www.ncbi.nlm.nih.gov/pubmed/23565200 http://dx.doi.org/10.1371/journal.pone.0060179 |
_version_ | 1782264972624003072 |
---|---|
author | Wang, Ling Wang, Min Wang, Shuyan Qi, Tianyang Guo, Lijing Li, Jinjiao Qi, Wenjing Ampah, Khamal Kwesi Ba, Xueqing Zeng, Xianlu |
author_facet | Wang, Ling Wang, Min Wang, Shuyan Qi, Tianyang Guo, Lijing Li, Jinjiao Qi, Wenjing Ampah, Khamal Kwesi Ba, Xueqing Zeng, Xianlu |
author_sort | Wang, Ling |
collection | PubMed |
description | Actin, one of the most evolutionarily conservative proteins in eukaryotes, is distributed both in the cytoplasm and the nucleus, and its dynamics plays important roles in numerous cellular processes. Previous evidence has shown that actin interacts with p53 and this interaction increases in the process of p53 responding to DNA damage, but the physiological significance of their interaction remains elusive. Here, we show that DNA damage induces both actin polymerization and p53 accumulation. To further understand the implication of actin polymerization in p53 function, cells were treated with actin aggregation agent. We find that the protein level of p53 decrease. The change in p53 is a consequence of the polymeric actin anchoring p53 in the cytoplasm, thus impairing p53 nuclear import. Analysis of phosphorylation and ubiquitination of p53 reveals that actin polymerization promotes the p53 phosphorylation at Ser315 and reduces the stabilization of p53 by recruiting Aurora kinase A. Taken together, our results suggest that the actin polymerization serves as a negative modulator leading to the impairment of nuclear import and destabilization of p53. On the basis of our results, we propose that actin polymerization might be a factor participating in the process of orchestrating p53 function in response to DNA damage. |
format | Online Article Text |
id | pubmed-3615075 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36150752013-04-05 Actin Polymerization Negatively Regulates p53 Function by Impairing Its Nuclear Import in Response to DNA Damage Wang, Ling Wang, Min Wang, Shuyan Qi, Tianyang Guo, Lijing Li, Jinjiao Qi, Wenjing Ampah, Khamal Kwesi Ba, Xueqing Zeng, Xianlu PLoS One Research Article Actin, one of the most evolutionarily conservative proteins in eukaryotes, is distributed both in the cytoplasm and the nucleus, and its dynamics plays important roles in numerous cellular processes. Previous evidence has shown that actin interacts with p53 and this interaction increases in the process of p53 responding to DNA damage, but the physiological significance of their interaction remains elusive. Here, we show that DNA damage induces both actin polymerization and p53 accumulation. To further understand the implication of actin polymerization in p53 function, cells were treated with actin aggregation agent. We find that the protein level of p53 decrease. The change in p53 is a consequence of the polymeric actin anchoring p53 in the cytoplasm, thus impairing p53 nuclear import. Analysis of phosphorylation and ubiquitination of p53 reveals that actin polymerization promotes the p53 phosphorylation at Ser315 and reduces the stabilization of p53 by recruiting Aurora kinase A. Taken together, our results suggest that the actin polymerization serves as a negative modulator leading to the impairment of nuclear import and destabilization of p53. On the basis of our results, we propose that actin polymerization might be a factor participating in the process of orchestrating p53 function in response to DNA damage. Public Library of Science 2013-04-02 /pmc/articles/PMC3615075/ /pubmed/23565200 http://dx.doi.org/10.1371/journal.pone.0060179 Text en © 2013 Wang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Wang, Ling Wang, Min Wang, Shuyan Qi, Tianyang Guo, Lijing Li, Jinjiao Qi, Wenjing Ampah, Khamal Kwesi Ba, Xueqing Zeng, Xianlu Actin Polymerization Negatively Regulates p53 Function by Impairing Its Nuclear Import in Response to DNA Damage |
title | Actin Polymerization Negatively Regulates p53 Function by Impairing Its Nuclear Import in Response to DNA Damage |
title_full | Actin Polymerization Negatively Regulates p53 Function by Impairing Its Nuclear Import in Response to DNA Damage |
title_fullStr | Actin Polymerization Negatively Regulates p53 Function by Impairing Its Nuclear Import in Response to DNA Damage |
title_full_unstemmed | Actin Polymerization Negatively Regulates p53 Function by Impairing Its Nuclear Import in Response to DNA Damage |
title_short | Actin Polymerization Negatively Regulates p53 Function by Impairing Its Nuclear Import in Response to DNA Damage |
title_sort | actin polymerization negatively regulates p53 function by impairing its nuclear import in response to dna damage |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3615075/ https://www.ncbi.nlm.nih.gov/pubmed/23565200 http://dx.doi.org/10.1371/journal.pone.0060179 |
work_keys_str_mv | AT wangling actinpolymerizationnegativelyregulatesp53functionbyimpairingitsnuclearimportinresponsetodnadamage AT wangmin actinpolymerizationnegativelyregulatesp53functionbyimpairingitsnuclearimportinresponsetodnadamage AT wangshuyan actinpolymerizationnegativelyregulatesp53functionbyimpairingitsnuclearimportinresponsetodnadamage AT qitianyang actinpolymerizationnegativelyregulatesp53functionbyimpairingitsnuclearimportinresponsetodnadamage AT guolijing actinpolymerizationnegativelyregulatesp53functionbyimpairingitsnuclearimportinresponsetodnadamage AT lijinjiao actinpolymerizationnegativelyregulatesp53functionbyimpairingitsnuclearimportinresponsetodnadamage AT qiwenjing actinpolymerizationnegativelyregulatesp53functionbyimpairingitsnuclearimportinresponsetodnadamage AT ampahkhamalkwesi actinpolymerizationnegativelyregulatesp53functionbyimpairingitsnuclearimportinresponsetodnadamage AT baxueqing actinpolymerizationnegativelyregulatesp53functionbyimpairingitsnuclearimportinresponsetodnadamage AT zengxianlu actinpolymerizationnegativelyregulatesp53functionbyimpairingitsnuclearimportinresponsetodnadamage |