Cargando…
Functional cooperation of miR-125a, miR-125b, and miR-205 in entinostat-induced downregulation of erbB2/erbB3 and apoptosis in breast cancer cells
We reported that the class I HDAC inhibitor entinostat induced apoptosis in erbB2-overexpressing breast cancer cells via downregulation of erbB2 and erbB3. Here, we study the molecular mechanism by which entinostat dual-targets erbB2/erbB3. Treatment with entinostat had no effect on erbB2/erbB3 mRNA...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3615747/ https://www.ncbi.nlm.nih.gov/pubmed/23519125 http://dx.doi.org/10.1038/cddis.2013.79 |
_version_ | 1782265033969893376 |
---|---|
author | Wang, S Huang, J Lyu, H Lee, C-K Tan, J Wang, J Liu, B |
author_facet | Wang, S Huang, J Lyu, H Lee, C-K Tan, J Wang, J Liu, B |
author_sort | Wang, S |
collection | PubMed |
description | We reported that the class I HDAC inhibitor entinostat induced apoptosis in erbB2-overexpressing breast cancer cells via downregulation of erbB2 and erbB3. Here, we study the molecular mechanism by which entinostat dual-targets erbB2/erbB3. Treatment with entinostat had no effect on erbB2/erbB3 mRNA, suggesting a transcription-independent mechanism. Entinostat decreased endogenous but not exogenous erbB2/erbB3, indicating it did not alter their protein stability. We hypothesized that entinostat might inhibit erbB2/erbB3 protein translation via specific miRNAs. Indeed, entinostat significantly upregulated miR-125a, miR-125b, and miR-205, that have been reported to target erbB2 and/or erbB3. Specific inhibitors were then used to determine whether these miRNAs had a causal role in entinostat-induced downregulation of erbB2/erbB3 and apoptosis. Transfection with a single inhibitor dramatically abrogated entinostat induction of miR-125a, miR-125b, or miR-205; however, none of the inhibitors blocked entinostat action on erbB2/erbB3. In contrast, co-transfection with two inhibitors not only reduced their corresponding miRNAs, but also significantly abrogated entinostat-mediated reduction of erbB2/erbB3. Moreover, simultaneous inhibition of two, but not one miRNA significantly attenuated entinostat-induced apoptosis. Interestingly, although the other HDAC inhibitors, such as SAHA and panobinostat, exhibited activity as potent as entinostat to induce growth inhibition and apoptosis in erbB2-overexpressing breast cancer cells, they had no significant effects on the three miRNAs. Instead, both SAHA- and panobinostat-decreased erbB2/erbB3 expression correlated with the reduction of their mRNA levels. Collectively, we demonstrate that entinostat specifically induces expression of miR-125a, miR-125b, and miR-205, which act in concert to downregulate erbB2/erbB3 in breast cancer cells. Our data suggest that epigenetic regulation via miRNA-dependent or -independent mechanisms may represent a novel approach to treat breast cancer patients with erbB2-overexpressing tumors. |
format | Online Article Text |
id | pubmed-3615747 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-36157472013-04-04 Functional cooperation of miR-125a, miR-125b, and miR-205 in entinostat-induced downregulation of erbB2/erbB3 and apoptosis in breast cancer cells Wang, S Huang, J Lyu, H Lee, C-K Tan, J Wang, J Liu, B Cell Death Dis Original Article We reported that the class I HDAC inhibitor entinostat induced apoptosis in erbB2-overexpressing breast cancer cells via downregulation of erbB2 and erbB3. Here, we study the molecular mechanism by which entinostat dual-targets erbB2/erbB3. Treatment with entinostat had no effect on erbB2/erbB3 mRNA, suggesting a transcription-independent mechanism. Entinostat decreased endogenous but not exogenous erbB2/erbB3, indicating it did not alter their protein stability. We hypothesized that entinostat might inhibit erbB2/erbB3 protein translation via specific miRNAs. Indeed, entinostat significantly upregulated miR-125a, miR-125b, and miR-205, that have been reported to target erbB2 and/or erbB3. Specific inhibitors were then used to determine whether these miRNAs had a causal role in entinostat-induced downregulation of erbB2/erbB3 and apoptosis. Transfection with a single inhibitor dramatically abrogated entinostat induction of miR-125a, miR-125b, or miR-205; however, none of the inhibitors blocked entinostat action on erbB2/erbB3. In contrast, co-transfection with two inhibitors not only reduced their corresponding miRNAs, but also significantly abrogated entinostat-mediated reduction of erbB2/erbB3. Moreover, simultaneous inhibition of two, but not one miRNA significantly attenuated entinostat-induced apoptosis. Interestingly, although the other HDAC inhibitors, such as SAHA and panobinostat, exhibited activity as potent as entinostat to induce growth inhibition and apoptosis in erbB2-overexpressing breast cancer cells, they had no significant effects on the three miRNAs. Instead, both SAHA- and panobinostat-decreased erbB2/erbB3 expression correlated with the reduction of their mRNA levels. Collectively, we demonstrate that entinostat specifically induces expression of miR-125a, miR-125b, and miR-205, which act in concert to downregulate erbB2/erbB3 in breast cancer cells. Our data suggest that epigenetic regulation via miRNA-dependent or -independent mechanisms may represent a novel approach to treat breast cancer patients with erbB2-overexpressing tumors. Nature Publishing Group 2013-03 2013-03-21 /pmc/articles/PMC3615747/ /pubmed/23519125 http://dx.doi.org/10.1038/cddis.2013.79 Text en Copyright © 2013 Macmillan Publishers Limited http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Original Article Wang, S Huang, J Lyu, H Lee, C-K Tan, J Wang, J Liu, B Functional cooperation of miR-125a, miR-125b, and miR-205 in entinostat-induced downregulation of erbB2/erbB3 and apoptosis in breast cancer cells |
title | Functional cooperation of miR-125a, miR-125b, and miR-205 in entinostat-induced downregulation of erbB2/erbB3 and apoptosis in breast cancer cells |
title_full | Functional cooperation of miR-125a, miR-125b, and miR-205 in entinostat-induced downregulation of erbB2/erbB3 and apoptosis in breast cancer cells |
title_fullStr | Functional cooperation of miR-125a, miR-125b, and miR-205 in entinostat-induced downregulation of erbB2/erbB3 and apoptosis in breast cancer cells |
title_full_unstemmed | Functional cooperation of miR-125a, miR-125b, and miR-205 in entinostat-induced downregulation of erbB2/erbB3 and apoptosis in breast cancer cells |
title_short | Functional cooperation of miR-125a, miR-125b, and miR-205 in entinostat-induced downregulation of erbB2/erbB3 and apoptosis in breast cancer cells |
title_sort | functional cooperation of mir-125a, mir-125b, and mir-205 in entinostat-induced downregulation of erbb2/erbb3 and apoptosis in breast cancer cells |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3615747/ https://www.ncbi.nlm.nih.gov/pubmed/23519125 http://dx.doi.org/10.1038/cddis.2013.79 |
work_keys_str_mv | AT wangs functionalcooperationofmir125amir125bandmir205inentinostatinduceddownregulationoferbb2erbb3andapoptosisinbreastcancercells AT huangj functionalcooperationofmir125amir125bandmir205inentinostatinduceddownregulationoferbb2erbb3andapoptosisinbreastcancercells AT lyuh functionalcooperationofmir125amir125bandmir205inentinostatinduceddownregulationoferbb2erbb3andapoptosisinbreastcancercells AT leeck functionalcooperationofmir125amir125bandmir205inentinostatinduceddownregulationoferbb2erbb3andapoptosisinbreastcancercells AT tanj functionalcooperationofmir125amir125bandmir205inentinostatinduceddownregulationoferbb2erbb3andapoptosisinbreastcancercells AT wangj functionalcooperationofmir125amir125bandmir205inentinostatinduceddownregulationoferbb2erbb3andapoptosisinbreastcancercells AT liub functionalcooperationofmir125amir125bandmir205inentinostatinduceddownregulationoferbb2erbb3andapoptosisinbreastcancercells |