Cargando…
Evolutionary Capacitance and Control of Protein Stability in Protein-Protein Interaction Networks
In addition to their biological function, protein complexes reduce the exposure of the constituent proteins to the risk of undesired oligomerization by reducing the concentration of the free monomeric state. We interpret this reduced risk as a stabilization of the functional state of the protein. We...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617028/ https://www.ncbi.nlm.nih.gov/pubmed/23592969 http://dx.doi.org/10.1371/journal.pcbi.1003023 |
_version_ | 1782265209942966272 |
---|---|
author | Dixit, Purushottam D. Maslov, Sergei |
author_facet | Dixit, Purushottam D. Maslov, Sergei |
author_sort | Dixit, Purushottam D. |
collection | PubMed |
description | In addition to their biological function, protein complexes reduce the exposure of the constituent proteins to the risk of undesired oligomerization by reducing the concentration of the free monomeric state. We interpret this reduced risk as a stabilization of the functional state of the protein. We estimate that protein-protein interactions can account for [Image: see text] of additional stabilization; a substantial contribution to intrinsic stability. We hypothesize that proteins in the interaction network act as evolutionary capacitors which allows their binding partners to explore regions of the sequence space which correspond to less stable proteins. In the interaction network of baker's yeast, we find that statistically proteins that receive higher energetic benefits from the interaction network are more likely to misfold. A simplified fitness landscape wherein the fitness of an organism is inversely proportional to the total concentration of unfolded proteins provides an evolutionary justification for the proposed trends. We conclude by outlining clear biophysical experiments to test our predictions. |
format | Online Article Text |
id | pubmed-3617028 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36170282013-04-16 Evolutionary Capacitance and Control of Protein Stability in Protein-Protein Interaction Networks Dixit, Purushottam D. Maslov, Sergei PLoS Comput Biol Research Article In addition to their biological function, protein complexes reduce the exposure of the constituent proteins to the risk of undesired oligomerization by reducing the concentration of the free monomeric state. We interpret this reduced risk as a stabilization of the functional state of the protein. We estimate that protein-protein interactions can account for [Image: see text] of additional stabilization; a substantial contribution to intrinsic stability. We hypothesize that proteins in the interaction network act as evolutionary capacitors which allows their binding partners to explore regions of the sequence space which correspond to less stable proteins. In the interaction network of baker's yeast, we find that statistically proteins that receive higher energetic benefits from the interaction network are more likely to misfold. A simplified fitness landscape wherein the fitness of an organism is inversely proportional to the total concentration of unfolded proteins provides an evolutionary justification for the proposed trends. We conclude by outlining clear biophysical experiments to test our predictions. Public Library of Science 2013-04-04 /pmc/articles/PMC3617028/ /pubmed/23592969 http://dx.doi.org/10.1371/journal.pcbi.1003023 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Dixit, Purushottam D. Maslov, Sergei Evolutionary Capacitance and Control of Protein Stability in Protein-Protein Interaction Networks |
title | Evolutionary Capacitance and Control of Protein Stability in Protein-Protein Interaction Networks |
title_full | Evolutionary Capacitance and Control of Protein Stability in Protein-Protein Interaction Networks |
title_fullStr | Evolutionary Capacitance and Control of Protein Stability in Protein-Protein Interaction Networks |
title_full_unstemmed | Evolutionary Capacitance and Control of Protein Stability in Protein-Protein Interaction Networks |
title_short | Evolutionary Capacitance and Control of Protein Stability in Protein-Protein Interaction Networks |
title_sort | evolutionary capacitance and control of protein stability in protein-protein interaction networks |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617028/ https://www.ncbi.nlm.nih.gov/pubmed/23592969 http://dx.doi.org/10.1371/journal.pcbi.1003023 |
work_keys_str_mv | AT dixitpurushottamd evolutionarycapacitanceandcontrolofproteinstabilityinproteinproteininteractionnetworks AT maslovsergei evolutionarycapacitanceandcontrolofproteinstabilityinproteinproteininteractionnetworks |