Cargando…
Novel Basophil- or Eosinophil-Depleted Mouse Models for Functional Analyses of Allergic Inflammation
Basophils and eosinophils play important roles in various host defense mechanisms but also act as harmful effectors in allergic disorders. We generated novel basophil- and eosinophil-depletion mouse models by introducing the human diphtheria toxin (DT) receptor gene under the control of the mouse CD...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3620047/ https://www.ncbi.nlm.nih.gov/pubmed/23577180 http://dx.doi.org/10.1371/journal.pone.0060958 |
_version_ | 1782265515786371072 |
---|---|
author | Matsuoka, Kunie Shitara, Hiroshi Taya, Choji Kohno, Kenji Kikkawa, Yoshiaki Yonekawa, Hiromichi |
author_facet | Matsuoka, Kunie Shitara, Hiroshi Taya, Choji Kohno, Kenji Kikkawa, Yoshiaki Yonekawa, Hiromichi |
author_sort | Matsuoka, Kunie |
collection | PubMed |
description | Basophils and eosinophils play important roles in various host defense mechanisms but also act as harmful effectors in allergic disorders. We generated novel basophil- and eosinophil-depletion mouse models by introducing the human diphtheria toxin (DT) receptor gene under the control of the mouse CD203c and the eosinophil peroxidase promoter, respectively, to study the critical roles of these cells in the immunological response. These mice exhibited selective depletion of the target cells upon DT administration. In the basophil-depletion model, DT administration attenuated a drop in body temperature in IgG-mediated systemic anaphylaxis in a dose-dependent manner and almost completely abolished the development of ear swelling in IgE-mediated chronic allergic inflammation (IgE-CAI), a typical skin swelling reaction with massive eosinophil infiltration. In contrast, in the eosinophil-depletion model, DT administration ameliorated the ear swelling in IgE-CAI whether DT was administered before, simultaneously, or after, antigen challenge, with significantly lower numbers of eosinophils infiltrating into the swelling site. These results confirm that basophils and eosinophils act as the initiator and the effector, respectively, in IgE-CAI. In addition, antibody array analysis suggested that eotaxin-2 is a principal chemokine that attracts proinflammatory cells, leading to chronic allergic inflammation. Thus, the two mouse models established in this study are potentially useful and powerful tools for studying the in vivo roles of basophils and eosinophils. The combination of basophil- and eosinophil-depletion mouse models provides a new approach to understanding the complicated mechanism of allergic inflammation in conditions such as atopic dermatitis and asthma. |
format | Online Article Text |
id | pubmed-3620047 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36200472013-04-10 Novel Basophil- or Eosinophil-Depleted Mouse Models for Functional Analyses of Allergic Inflammation Matsuoka, Kunie Shitara, Hiroshi Taya, Choji Kohno, Kenji Kikkawa, Yoshiaki Yonekawa, Hiromichi PLoS One Research Article Basophils and eosinophils play important roles in various host defense mechanisms but also act as harmful effectors in allergic disorders. We generated novel basophil- and eosinophil-depletion mouse models by introducing the human diphtheria toxin (DT) receptor gene under the control of the mouse CD203c and the eosinophil peroxidase promoter, respectively, to study the critical roles of these cells in the immunological response. These mice exhibited selective depletion of the target cells upon DT administration. In the basophil-depletion model, DT administration attenuated a drop in body temperature in IgG-mediated systemic anaphylaxis in a dose-dependent manner and almost completely abolished the development of ear swelling in IgE-mediated chronic allergic inflammation (IgE-CAI), a typical skin swelling reaction with massive eosinophil infiltration. In contrast, in the eosinophil-depletion model, DT administration ameliorated the ear swelling in IgE-CAI whether DT was administered before, simultaneously, or after, antigen challenge, with significantly lower numbers of eosinophils infiltrating into the swelling site. These results confirm that basophils and eosinophils act as the initiator and the effector, respectively, in IgE-CAI. In addition, antibody array analysis suggested that eotaxin-2 is a principal chemokine that attracts proinflammatory cells, leading to chronic allergic inflammation. Thus, the two mouse models established in this study are potentially useful and powerful tools for studying the in vivo roles of basophils and eosinophils. The combination of basophil- and eosinophil-depletion mouse models provides a new approach to understanding the complicated mechanism of allergic inflammation in conditions such as atopic dermatitis and asthma. Public Library of Science 2013-04-08 /pmc/articles/PMC3620047/ /pubmed/23577180 http://dx.doi.org/10.1371/journal.pone.0060958 Text en © 2013 Matsuoka et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Matsuoka, Kunie Shitara, Hiroshi Taya, Choji Kohno, Kenji Kikkawa, Yoshiaki Yonekawa, Hiromichi Novel Basophil- or Eosinophil-Depleted Mouse Models for Functional Analyses of Allergic Inflammation |
title | Novel Basophil- or Eosinophil-Depleted Mouse Models for Functional Analyses of Allergic Inflammation |
title_full | Novel Basophil- or Eosinophil-Depleted Mouse Models for Functional Analyses of Allergic Inflammation |
title_fullStr | Novel Basophil- or Eosinophil-Depleted Mouse Models for Functional Analyses of Allergic Inflammation |
title_full_unstemmed | Novel Basophil- or Eosinophil-Depleted Mouse Models for Functional Analyses of Allergic Inflammation |
title_short | Novel Basophil- or Eosinophil-Depleted Mouse Models for Functional Analyses of Allergic Inflammation |
title_sort | novel basophil- or eosinophil-depleted mouse models for functional analyses of allergic inflammation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3620047/ https://www.ncbi.nlm.nih.gov/pubmed/23577180 http://dx.doi.org/10.1371/journal.pone.0060958 |
work_keys_str_mv | AT matsuokakunie novelbasophiloreosinophildepletedmousemodelsforfunctionalanalysesofallergicinflammation AT shitarahiroshi novelbasophiloreosinophildepletedmousemodelsforfunctionalanalysesofallergicinflammation AT tayachoji novelbasophiloreosinophildepletedmousemodelsforfunctionalanalysesofallergicinflammation AT kohnokenji novelbasophiloreosinophildepletedmousemodelsforfunctionalanalysesofallergicinflammation AT kikkawayoshiaki novelbasophiloreosinophildepletedmousemodelsforfunctionalanalysesofallergicinflammation AT yonekawahiromichi novelbasophiloreosinophildepletedmousemodelsforfunctionalanalysesofallergicinflammation |