Cargando…
A mixture model for expression deconvolution from RNA-seq in heterogeneous tissues
BACKGROUND: RNA-seq, a next-generation sequencing based method for transcriptome analysis, is rapidly emerging as the method of choice for comprehensive transcript abundance estimation. The accuracy of RNA-seq can be highly impacted by the purity of samples. A prominent, outstanding problem in RNA-s...
Autores principales: | Li, Yi, Xie, Xiaohui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3622628/ https://www.ncbi.nlm.nih.gov/pubmed/23735186 http://dx.doi.org/10.1186/1471-2105-14-S5-S11 |
Ejemplares similares
-
MixClone: a mixture model for inferring tumor subclonal populations
por: Li, Yi, et al.
Publicado: (2015) -
Automated deconvolution of structured mixtures from heterogeneous tumor genomic data
por: Roman, Theodore, et al.
Publicado: (2017) -
Mixture modeling of microarray gene expression data
por: Yang, Yang, et al.
Publicado: (2007) -
RDDpred: a condition-specific RNA-editing prediction model from RNA-seq data
por: Kim, Min-su, et al.
Publicado: (2016) -
MGMR: leveraging RNA-Seq population data to optimize expression estimation
por: Rozov, Roye, et al.
Publicado: (2012)