Cargando…

Does the essential oil of Lippia sidoides Cham. (pepper-rosmarin) affect its endophytic microbial community?

BACKGROUND: Lippia sidoides Cham., also known as pepper-rosmarin, produces an essential oil in its leaves that is currently used by the pharmaceutical, perfumery and cosmetic industries for its antimicrobial and aromatic properties. Because of the antimicrobial compounds (mainly thymol and carvacrol...

Descripción completa

Detalles Bibliográficos
Autores principales: da Silva, Thais Freitas, Vollú, Renata Estebanez, Jurelevicius, Diogo, Alviano, Daniela Sales, Alviano, Celuta Sales, Blank, Arie Fitzgerald, Seldin, Lucy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3626855/
https://www.ncbi.nlm.nih.gov/pubmed/23387945
http://dx.doi.org/10.1186/1471-2180-13-29
Descripción
Sumario:BACKGROUND: Lippia sidoides Cham., also known as pepper-rosmarin, produces an essential oil in its leaves that is currently used by the pharmaceutical, perfumery and cosmetic industries for its antimicrobial and aromatic properties. Because of the antimicrobial compounds (mainly thymol and carvacrol) found in the essential oil, we believe that the endophytic microorganisms found in L. sidoides are selected to live in different parts of the plant. RESULTS: In this study, the endophytic microbial communities from the stems and leaves of four L. sidoides genotypes were determined using cultivation-dependent and cultivation-independent approaches. In total, 145 endophytic bacterial strains were isolated and further grouped using either ERIC-PCR or BOX-PCR, resulting in 76 groups composed of different genera predominantly belonging to the Gammaproteobacteria. The endophytic microbial diversity was also analyzed by PCR-DGGE using 16S rRNA-based universal and group-specific primers for total bacteria, Alphaproteobacteria, Betaproteobacteria and Actinobacteria and 18S rRNA-based primers for fungi. PCR-DGGE profile analysis and principal component analysis showed that the total bacteria, Alphaproteobacteria, Betaproteobacteria and fungi were influenced not only by the location within the plant (leaf vs. stem) but also by the presence of the main components of the L. sidoides essential oil (thymol and/or carvacrol) in the leaves. However, the same could not be observed within the Actinobacteria. CONCLUSION: The data presented here are the first step to begin shedding light on the impact of the essential oil in the endophytic microorganisms in pepper-rosmarin.