Cargando…
Detecting recurrent gene mutation in interaction network context using multi-scale graph diffusion
BACKGROUND: Delineating the molecular drivers of cancer, i.e. determining cancer genes and the pathways which they deregulate, is an important challenge in cancer research. In this study, we aim to identify pathways of frequently mutated genes by exploiting their network neighborhood encoded in the...
Autores principales: | Babaei, Sepideh, Hulsman, Marc, Reinders, Marcel, Ridder, Jeroen de |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3626877/ https://www.ncbi.nlm.nih.gov/pubmed/23343428 http://dx.doi.org/10.1186/1471-2105-14-29 |
Ejemplares similares
-
Hi-C Chromatin Interaction Networks Predict Co-expression in the Mouse Cortex
por: Babaei, Sepideh, et al.
Publicado: (2015) -
3D hotspots of recurrent retroviral insertions reveal long-range interactions with cancer genes
por: Babaei, Sepideh, et al.
Publicado: (2015) -
Scale-space measures for graph topology link protein network architecture to function
por: Hulsman, Marc, et al.
Publicado: (2014) -
Integration of gene expression and DNA-methylation profiles improves molecular subtype classification in acute myeloid leukemia
por: Taskesen, Erdogan, et al.
Publicado: (2015) -
Delineation of amplification, hybridization and location effects in microarray data yields better-quality normalization
por: Hulsman, Marc, et al.
Publicado: (2010)