Cargando…
Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection
NOD2 receptor and the cytosolic protein kinase RIPK2 regulate NF-κB and MAP kinase signaling during bacterial infections, but the role of this immune axis during viral infections has not been addressed. We demonstrate that Nod2(−/−) and Ripk2(−/−) mice are hypersusceptible to influenza A virus infec...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631456/ https://www.ncbi.nlm.nih.gov/pubmed/23525089 http://dx.doi.org/10.1038/ni.2563 |
Sumario: | NOD2 receptor and the cytosolic protein kinase RIPK2 regulate NF-κB and MAP kinase signaling during bacterial infections, but the role of this immune axis during viral infections has not been addressed. We demonstrate that Nod2(−/−) and Ripk2(−/−) mice are hypersusceptible to influenza A virus infection. Ripk2(−/−) cells displayed defective mitophagy leading to enhanced mitochondrial superoxide production and accumulation of damaged mitochondria resulting in increased NLRP3 inflammasome activation and IL-18 production. RIPK2 regulated mitophagy in a kinase-dependent manner by phosphorylating the mitophagy inducer ULK1. Accordingly, Ulk1(−/−) cells displayed enhanced mitochondrial superoxide production and caspase-1 activation. These results demonstrate a role for NOD2-RIPK2 signaling in protection against virally triggered immunopathology by negatively regulating NLRP3 inflammasome activation and IL-18 production via ULK1-dependent mitophagy. |
---|