Cargando…
Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-α
BACKGROUND: Tumor necrosis factor-alpha (TNF-α) is elevated early in injured brain after traumatic brain injury (TBI), in humans and in animals. Etanercept (a TNF-α antagonist with anti-inflammatory effects) attenuates TBI in rats by reducing both microglial and astrocytic activation and increased s...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636122/ https://www.ncbi.nlm.nih.gov/pubmed/23496862 http://dx.doi.org/10.1186/1471-2202-14-33 |
_version_ | 1782267279846670336 |
---|---|
author | Chio, Chung-Ching Chang, Chin-Hong Wang, Che-Chuan Cheong, Chong-Un Chao, Chien-Ming Cheng, Bor-Chih Yang, Chung-Zhing Chang, Ching-Ping |
author_facet | Chio, Chung-Ching Chang, Chin-Hong Wang, Che-Chuan Cheong, Chong-Un Chao, Chien-Ming Cheng, Bor-Chih Yang, Chung-Zhing Chang, Ching-Ping |
author_sort | Chio, Chung-Ching |
collection | PubMed |
description | BACKGROUND: Tumor necrosis factor-alpha (TNF-α) is elevated early in injured brain after traumatic brain injury (TBI), in humans and in animals. Etanercept (a TNF-α antagonist with anti-inflammatory effects) attenuates TBI in rats by reducing both microglial and astrocytic activation and increased serum levels of TNF-α. However, it is not known whether etanercept improves outcomes of TBI by attenuating microglia-associated, astrocytes-associated, and/or neurons-associated TNF-α expression in ischemic brain. A well clinically relevant rat model, where a lateral fluid percussion is combined with systemic administration of etanercept immediately after TBI, was used. The neurological severity score and motor function was measured on all rats preinjury and on day 3 after etanercept administration. At the same time, the neuronal and glial production of TNF-α was measured by Immunofluorescence staining. In addition, TNFα contents of ischemic cerebral homogenates was measured using commercial enzyme-linked immunosorbent assay kits. RESULTS: In addition to inducing brain ischemia as well as neurological and motor deficits, TBI caused significantly higher numbers of microglia-TNF-α double positive cells, but not neurons-TNF-α or astrocytes-TNF-α double positive cells in the injured brain areas than did the sham operated controls, when evaluated 3 days after TBI. The TBI-induced cerebral ischemia, neurological motor deficits, and increased numbers of microglia-TNF-α double positive cells and increased TNF-α levels in the injured brain were all significantly attenuated by etanercept therapy. CONCLUSION: This finding indicates that early microglia overproduction of TNF-α in the injured brain region after TBI contributes to cerebral ischemia and neurological motor deficits, which can be attenuated by etanercept therapy. Studies in this model could provide insight into the mechanisms underlying neurological motor disturbance in brain-injured patients. |
format | Online Article Text |
id | pubmed-3636122 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-36361222013-04-26 Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-α Chio, Chung-Ching Chang, Chin-Hong Wang, Che-Chuan Cheong, Chong-Un Chao, Chien-Ming Cheng, Bor-Chih Yang, Chung-Zhing Chang, Ching-Ping BMC Neurosci Research Article BACKGROUND: Tumor necrosis factor-alpha (TNF-α) is elevated early in injured brain after traumatic brain injury (TBI), in humans and in animals. Etanercept (a TNF-α antagonist with anti-inflammatory effects) attenuates TBI in rats by reducing both microglial and astrocytic activation and increased serum levels of TNF-α. However, it is not known whether etanercept improves outcomes of TBI by attenuating microglia-associated, astrocytes-associated, and/or neurons-associated TNF-α expression in ischemic brain. A well clinically relevant rat model, where a lateral fluid percussion is combined with systemic administration of etanercept immediately after TBI, was used. The neurological severity score and motor function was measured on all rats preinjury and on day 3 after etanercept administration. At the same time, the neuronal and glial production of TNF-α was measured by Immunofluorescence staining. In addition, TNFα contents of ischemic cerebral homogenates was measured using commercial enzyme-linked immunosorbent assay kits. RESULTS: In addition to inducing brain ischemia as well as neurological and motor deficits, TBI caused significantly higher numbers of microglia-TNF-α double positive cells, but not neurons-TNF-α or astrocytes-TNF-α double positive cells in the injured brain areas than did the sham operated controls, when evaluated 3 days after TBI. The TBI-induced cerebral ischemia, neurological motor deficits, and increased numbers of microglia-TNF-α double positive cells and increased TNF-α levels in the injured brain were all significantly attenuated by etanercept therapy. CONCLUSION: This finding indicates that early microglia overproduction of TNF-α in the injured brain region after TBI contributes to cerebral ischemia and neurological motor deficits, which can be attenuated by etanercept therapy. Studies in this model could provide insight into the mechanisms underlying neurological motor disturbance in brain-injured patients. BioMed Central 2013-03-15 /pmc/articles/PMC3636122/ /pubmed/23496862 http://dx.doi.org/10.1186/1471-2202-14-33 Text en Copyright © 2013 Chio et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Chio, Chung-Ching Chang, Chin-Hong Wang, Che-Chuan Cheong, Chong-Un Chao, Chien-Ming Cheng, Bor-Chih Yang, Chung-Zhing Chang, Ching-Ping Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-α |
title | Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-α |
title_full | Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-α |
title_fullStr | Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-α |
title_full_unstemmed | Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-α |
title_short | Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-α |
title_sort | etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-α |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3636122/ https://www.ncbi.nlm.nih.gov/pubmed/23496862 http://dx.doi.org/10.1186/1471-2202-14-33 |
work_keys_str_mv | AT chiochungching etanerceptattenuatestraumaticbraininjuryinratsbyreducingearlymicroglialexpressionoftumornecrosisfactora AT changchinhong etanerceptattenuatestraumaticbraininjuryinratsbyreducingearlymicroglialexpressionoftumornecrosisfactora AT wangchechuan etanerceptattenuatestraumaticbraininjuryinratsbyreducingearlymicroglialexpressionoftumornecrosisfactora AT cheongchongun etanerceptattenuatestraumaticbraininjuryinratsbyreducingearlymicroglialexpressionoftumornecrosisfactora AT chaochienming etanerceptattenuatestraumaticbraininjuryinratsbyreducingearlymicroglialexpressionoftumornecrosisfactora AT chengborchih etanerceptattenuatestraumaticbraininjuryinratsbyreducingearlymicroglialexpressionoftumornecrosisfactora AT yangchungzhing etanerceptattenuatestraumaticbraininjuryinratsbyreducingearlymicroglialexpressionoftumornecrosisfactora AT changchingping etanerceptattenuatestraumaticbraininjuryinratsbyreducingearlymicroglialexpressionoftumornecrosisfactora |