Cargando…

Cloning, Expression and Characterization of 3-Hydroxyisobutyrate Dehydrogenase from Pseudomonas denitrificans ATCC 13867

The gene encoding an NAD(+)-dependent, 3-hydroxyisobutyrate dehydrogenase (3HIBDH-IV) from Pseudomonas denitrificans ATCC 13867 was cloned and expressed in Escherichia coli BL 21 (DE3) and characterized to understand its physiological relevance in the degradation of 3-hydroxypropionic acid (3-HP). T...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Shengfang, Mohan Raj, Subramanian, Ashok, Somasundar, Edwardraja, Selvakumar, Lee, Sun-gu, Park, Sunghoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3642240/
https://www.ncbi.nlm.nih.gov/pubmed/23658760
http://dx.doi.org/10.1371/journal.pone.0062666
Descripción
Sumario:The gene encoding an NAD(+)-dependent, 3-hydroxyisobutyrate dehydrogenase (3HIBDH-IV) from Pseudomonas denitrificans ATCC 13867 was cloned and expressed in Escherichia coli BL 21 (DE3) and characterized to understand its physiological relevance in the degradation of 3-hydroxypropionic acid (3-HP). The deduced amino acid sequence showed high similarity to other 3-hydroxyisobutyrate dehydrogenase isozymes (3HIBDHs) of P. denitrificans ATCC 13867. A comparison of 3HIBDH-IV with its relevant enzymes along with molecular docking studies suggested that Lys171, Asn175 and Gly123 are important for its catalytic function on 3-hydroxyacids. The recombinant 3HIBDH-IV was purified to homogeneity utilizing a Ni-NTA-HP resin column in high yield. 3HIBDH-IV was very specific to (S)-3-hydroxyisobutyrate, but also catalyzed the oxidation of 3-HP to malonate semialdehyde. The specific activity and half-saturation constant (K (m)) for 3-HP at 30°C and pH 9.0 were determined to be 17 U/mg protein and 1.0 mM, respectively. Heavy metals, such as Ag(+) and Hg(2+), completely inhibited the 3HIBDH-IV activity, whereas dithiothreitol, 2-mercaptoethanol and ethylenediaminetetraacetic acid increased its activity 1.5–1.8-fold. This paper reports the characteristics of 3HIBDH-IV as well as its probable role in 3-HP degradation.