Cargando…
Mechanical unzipping and rezipping of a single SNARE complex reveals hysteresis as a force-generating mechanism
Formation of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex provides mechanical thrust for membrane fusion, but its molecular mechanism is still unclear. Here using magnetic tweezers, we observe mechanical responses of a single neuronal SNARE complex under...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644077/ https://www.ncbi.nlm.nih.gov/pubmed/23591872 http://dx.doi.org/10.1038/ncomms2692 |
Sumario: | Formation of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex provides mechanical thrust for membrane fusion, but its molecular mechanism is still unclear. Here using magnetic tweezers, we observe mechanical responses of a single neuronal SNARE complex under constant pulling force. Single SNARE complexes may be unzipped with 34 pN force. When rezipping is induced by lowering the force to 11 pN, only a partially assembled state results, with the C-terminal half of the SNARE complex remaining disassembled. Reassembly of the C-terminal half occurs only when the force is further lowered below 11 pN. Thus, mechanical hysteresis, characterized by the unzipping and rezipping cycle of a single SNARE complex, produces the partially assembled state. In this metastable state, unzipping toward the N-terminus is suppressed while zippering toward the C-terminus is initiated as a steep function of force. This ensures the directionality of SNARE-complex formation, making the SNARE complex a robust force-generating machine. |
---|