Cargando…

Conformational selection of translation initiation factor 3 signals proper substrate selection

During translation, initiation factor (IF) 3 binds to the small, 30S, ribosomal subunit and regulates the fidelity with which the initiator tRNA and mRNA start codon substrates are selected into the 30S initiation complex (30S IC). The molecular mechanism through which IF3 promotes recognition and s...

Descripción completa

Detalles Bibliográficos
Autores principales: Elvekrog, Margaret M., Gonzalez, Ruben L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648635/
https://www.ncbi.nlm.nih.gov/pubmed/23584454
http://dx.doi.org/10.1038/nsmb.2554
Descripción
Sumario:During translation, initiation factor (IF) 3 binds to the small, 30S, ribosomal subunit and regulates the fidelity with which the initiator tRNA and mRNA start codon substrates are selected into the 30S initiation complex (30S IC). The molecular mechanism through which IF3 promotes recognition and signaling of correct substrate selection, however, remains poorly defined. Using single-molecule fluorescence resonance energy transfer, here we show that 30S IC-bound Escherichia coli IF3 exists in a dynamic equilibrium between at least three conformations. We have found that recognition of a proper anticodon-codon interaction between initiator tRNA and the start codon within a completely assembled 30S IC selectively shifts this equilibrium towards a single IF3 conformation. Our results strongly support a conformational selection model in which the conformation of IF3 that is selectively stabilized within a completely and correctly assembled 30S IC facilitates further progress along the initiation pathway.