Cargando…
Transient neuromotor phenotype in transgenic spastic mice expressing low levels of glycine receptor β-subunit: an animal model of startle disease
Startle disease or hereditary hyperekplexia has been shown to result from mutations in the α(1)-subunit gene of the inhibitory glycine receptor (GlyR). In hyperekplexia patients, neuromotor symptoms generally become apparent at birth, improve with age, and often disappear in adulthood. Loss-of-funct...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Science Ltd
2000
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3655541/ https://www.ncbi.nlm.nih.gov/pubmed/10651857 http://dx.doi.org/10.1046/j.1460-9568.2000.00877.x |
_version_ | 1782269891313664000 |
---|---|
author | Becker, Lore Hartenstein, Bettina Schenkel, Johannes Kuhse, Jochen Betz, Heinrich Weiher, Hans |
author_facet | Becker, Lore Hartenstein, Bettina Schenkel, Johannes Kuhse, Jochen Betz, Heinrich Weiher, Hans |
author_sort | Becker, Lore |
collection | PubMed |
description | Startle disease or hereditary hyperekplexia has been shown to result from mutations in the α(1)-subunit gene of the inhibitory glycine receptor (GlyR). In hyperekplexia patients, neuromotor symptoms generally become apparent at birth, improve with age, and often disappear in adulthood. Loss-of-function mutations of GlyR α or β-subunits in mice show rather severe neuromotor phenotypes. Here, we generated mutant mice with a transient neuromotor deficiency by introducing a GlyR β transgene into the spastic mouse (spa/spa), a recessive mutant carrying a transposon insertion within the GlyR β-subunit gene. In spa/spa TG456 mice, one of three strains generated with this construct, which expressed very low levels of GlyR β transgene-dependent mRNA and protein, the spastic phenotype was found to depend upon the transgene copy number. Notably, mice carrying two copies of the transgene showed an age-dependent sensitivity to tremor induction, which peaked at ∼ 3–4 weeks postnatally. This closely resembles the development of symptoms in human hyperekplexia patients, where motor coordination significantly improves after adolescence. The spa/spa TG456 line thus may serve as an animal model of human startle disease. |
format | Online Article Text |
id | pubmed-3655541 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2000 |
publisher | Blackwell Science Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-36555412013-05-17 Transient neuromotor phenotype in transgenic spastic mice expressing low levels of glycine receptor β-subunit: an animal model of startle disease Becker, Lore Hartenstein, Bettina Schenkel, Johannes Kuhse, Jochen Betz, Heinrich Weiher, Hans Eur J Neurosci Original Articles Startle disease or hereditary hyperekplexia has been shown to result from mutations in the α(1)-subunit gene of the inhibitory glycine receptor (GlyR). In hyperekplexia patients, neuromotor symptoms generally become apparent at birth, improve with age, and often disappear in adulthood. Loss-of-function mutations of GlyR α or β-subunits in mice show rather severe neuromotor phenotypes. Here, we generated mutant mice with a transient neuromotor deficiency by introducing a GlyR β transgene into the spastic mouse (spa/spa), a recessive mutant carrying a transposon insertion within the GlyR β-subunit gene. In spa/spa TG456 mice, one of three strains generated with this construct, which expressed very low levels of GlyR β transgene-dependent mRNA and protein, the spastic phenotype was found to depend upon the transgene copy number. Notably, mice carrying two copies of the transgene showed an age-dependent sensitivity to tremor induction, which peaked at ∼ 3–4 weeks postnatally. This closely resembles the development of symptoms in human hyperekplexia patients, where motor coordination significantly improves after adolescence. The spa/spa TG456 line thus may serve as an animal model of human startle disease. Blackwell Science Ltd 2000-01 /pmc/articles/PMC3655541/ /pubmed/10651857 http://dx.doi.org/10.1046/j.1460-9568.2000.00877.x Text en © 2000 European Neuroscience Associatoin http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation. |
spellingShingle | Original Articles Becker, Lore Hartenstein, Bettina Schenkel, Johannes Kuhse, Jochen Betz, Heinrich Weiher, Hans Transient neuromotor phenotype in transgenic spastic mice expressing low levels of glycine receptor β-subunit: an animal model of startle disease |
title | Transient neuromotor phenotype in transgenic spastic mice expressing low levels of glycine receptor β-subunit: an animal model of startle disease |
title_full | Transient neuromotor phenotype in transgenic spastic mice expressing low levels of glycine receptor β-subunit: an animal model of startle disease |
title_fullStr | Transient neuromotor phenotype in transgenic spastic mice expressing low levels of glycine receptor β-subunit: an animal model of startle disease |
title_full_unstemmed | Transient neuromotor phenotype in transgenic spastic mice expressing low levels of glycine receptor β-subunit: an animal model of startle disease |
title_short | Transient neuromotor phenotype in transgenic spastic mice expressing low levels of glycine receptor β-subunit: an animal model of startle disease |
title_sort | transient neuromotor phenotype in transgenic spastic mice expressing low levels of glycine receptor β-subunit: an animal model of startle disease |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3655541/ https://www.ncbi.nlm.nih.gov/pubmed/10651857 http://dx.doi.org/10.1046/j.1460-9568.2000.00877.x |
work_keys_str_mv | AT beckerlore transientneuromotorphenotypeintransgenicspasticmiceexpressinglowlevelsofglycinereceptorbsubunitananimalmodelofstartledisease AT hartensteinbettina transientneuromotorphenotypeintransgenicspasticmiceexpressinglowlevelsofglycinereceptorbsubunitananimalmodelofstartledisease AT schenkeljohannes transientneuromotorphenotypeintransgenicspasticmiceexpressinglowlevelsofglycinereceptorbsubunitananimalmodelofstartledisease AT kuhsejochen transientneuromotorphenotypeintransgenicspasticmiceexpressinglowlevelsofglycinereceptorbsubunitananimalmodelofstartledisease AT betzheinrich transientneuromotorphenotypeintransgenicspasticmiceexpressinglowlevelsofglycinereceptorbsubunitananimalmodelofstartledisease AT weiherhans transientneuromotorphenotypeintransgenicspasticmiceexpressinglowlevelsofglycinereceptorbsubunitananimalmodelofstartledisease |