Cargando…
Hec1-Dependent Cyclin B2 Stabilization Regulates the G2-M Transition and Early Prometaphase in Mouse Oocytes
The functions of the Ndc80/Hec1 subunit of the highly conserved Ndc80 kinetochore complex are normally restricted to M phase when it exerts a pivotal kinetochore-based role. Here, we find that in mouse oocytes, depletion of Hec1 severely compromises the G2-M transition because of impaired activation...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659288/ https://www.ncbi.nlm.nih.gov/pubmed/23541922 http://dx.doi.org/10.1016/j.devcel.2013.02.008 |
Sumario: | The functions of the Ndc80/Hec1 subunit of the highly conserved Ndc80 kinetochore complex are normally restricted to M phase when it exerts a pivotal kinetochore-based role. Here, we find that in mouse oocytes, depletion of Hec1 severely compromises the G2-M transition because of impaired activation of cyclin-dependent kinase 1 (Cdk1). Unexpectedly, impaired M phase entry is due to instability of the Cdk1-activating subunit, cyclin B2, which cannot be covered by cyclin B1. Hec1 protects cyclin B2 from destruction by the Cdh1-activated anaphase-promoting complex (APC(Cdh1)) and remains important for cyclin B2 stabilization during early M phase, required for the initial stages of acentrosomal spindle assembly. By late M phase, however, Hec1 and cyclin B2 become uncoupled, and although Hec1 remains stable, APC(Cdc20) triggers cyclin B2 destruction. These data identify another dimension to Hec1 function centered on M phase entry and early prometaphase progression and challenge the view that cyclin B2 is completely dispensable in mammals. |
---|