Cargando…
Passivation mechanism of thermal atomic layer-deposited Al(2)O(3) films on silicon at different annealing temperatures
Thermal atomic layer-deposited (ALD) aluminum oxide (Al(2)O(3)) acquires high negative fixed charge density (Q(f)) and sufficiently low interface trap density after annealing, which enables excellent surface passivation for crystalline silicon. Q(f) can be controlled by varying the annealing tempera...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664088/ https://www.ncbi.nlm.nih.gov/pubmed/23452508 http://dx.doi.org/10.1186/1556-276X-8-114 |
Sumario: | Thermal atomic layer-deposited (ALD) aluminum oxide (Al(2)O(3)) acquires high negative fixed charge density (Q(f)) and sufficiently low interface trap density after annealing, which enables excellent surface passivation for crystalline silicon. Q(f) can be controlled by varying the annealing temperatures. In this study, the effect of the annealing temperature of thermal ALD Al(2)O(3) films on p-type Czochralski silicon wafers was investigated. Corona charging measurements revealed that the Q(f) obtained at 300°C did not significantly affect passivation. The interface-trapping density markedly increased at high annealing temperature (>600°C) and degraded the surface passivation even at a high Q(f). Negatively charged or neutral vacancies were found in the samples annealed at 300°C, 500°C, and 750°C using positron annihilation techniques. The Al defect density in the bulk film and the vacancy density near the SiO(x)/Si interface region decreased with increased temperature. Measurement results of Q(f) proved that the Al vacancy of the bulk film may not be related to Q(f). The defect density in the SiO(x) region affected the chemical passivation, but other factors may dominantly influence chemical passivation at 750°C. |
---|