Cargando…
Cryo–electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering
Synaptic vesicles are embedded in a complex filamentous network at the presynaptic terminal. Before fusion, vesicles are linked to the active zone (AZ) by short filaments (tethers). The identity of the molecules that form and regulate tethers remains unknown, but Rab3-interacting molecule (RIM) is a...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664715/ https://www.ncbi.nlm.nih.gov/pubmed/23712261 http://dx.doi.org/10.1083/jcb.201206063 |
_version_ | 1782271146446553088 |
---|---|
author | Fernández-Busnadiego, Rubén Asano, Shoh Oprisoreanu, Ana-Maria Sakata, Eri Doengi, Michael Kochovski, Zdravko Zürner, Magdalena Stein, Valentin Schoch, Susanne Baumeister, Wolfgang Lučić, Vladan |
author_facet | Fernández-Busnadiego, Rubén Asano, Shoh Oprisoreanu, Ana-Maria Sakata, Eri Doengi, Michael Kochovski, Zdravko Zürner, Magdalena Stein, Valentin Schoch, Susanne Baumeister, Wolfgang Lučić, Vladan |
author_sort | Fernández-Busnadiego, Rubén |
collection | PubMed |
description | Synaptic vesicles are embedded in a complex filamentous network at the presynaptic terminal. Before fusion, vesicles are linked to the active zone (AZ) by short filaments (tethers). The identity of the molecules that form and regulate tethers remains unknown, but Rab3-interacting molecule (RIM) is a prominent candidate, given its central role in AZ organization. In this paper, we analyzed presynaptic architecture of RIM1α knockout (KO) mice by cryo–electron tomography. In stark contrast to previous work on dehydrated, chemically fixed samples, our data show significant alterations in vesicle distribution and AZ tethering that could provide a structural basis for the functional deficits of RIM1α KO synapses. Proteasome inhibition reversed these structural defects, suggesting a functional recovery confirmed by electrophysiological recordings. Altogether, our results not only point to the ubiquitin–proteasome system as an important regulator of presynaptic architecture and function but also show that the tethering machinery plays a critical role in exocytosis, converging into a structural model of synaptic vesicle priming by RIM1α. |
format | Online Article Text |
id | pubmed-3664715 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-36647152013-11-27 Cryo–electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering Fernández-Busnadiego, Rubén Asano, Shoh Oprisoreanu, Ana-Maria Sakata, Eri Doengi, Michael Kochovski, Zdravko Zürner, Magdalena Stein, Valentin Schoch, Susanne Baumeister, Wolfgang Lučić, Vladan J Cell Biol Research Articles Synaptic vesicles are embedded in a complex filamentous network at the presynaptic terminal. Before fusion, vesicles are linked to the active zone (AZ) by short filaments (tethers). The identity of the molecules that form and regulate tethers remains unknown, but Rab3-interacting molecule (RIM) is a prominent candidate, given its central role in AZ organization. In this paper, we analyzed presynaptic architecture of RIM1α knockout (KO) mice by cryo–electron tomography. In stark contrast to previous work on dehydrated, chemically fixed samples, our data show significant alterations in vesicle distribution and AZ tethering that could provide a structural basis for the functional deficits of RIM1α KO synapses. Proteasome inhibition reversed these structural defects, suggesting a functional recovery confirmed by electrophysiological recordings. Altogether, our results not only point to the ubiquitin–proteasome system as an important regulator of presynaptic architecture and function but also show that the tethering machinery plays a critical role in exocytosis, converging into a structural model of synaptic vesicle priming by RIM1α. The Rockefeller University Press 2013-05-27 /pmc/articles/PMC3664715/ /pubmed/23712261 http://dx.doi.org/10.1083/jcb.201206063 Text en © 2013 Fernández-Busnadiego et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/). |
spellingShingle | Research Articles Fernández-Busnadiego, Rubén Asano, Shoh Oprisoreanu, Ana-Maria Sakata, Eri Doengi, Michael Kochovski, Zdravko Zürner, Magdalena Stein, Valentin Schoch, Susanne Baumeister, Wolfgang Lučić, Vladan Cryo–electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering |
title | Cryo–electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering |
title_full | Cryo–electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering |
title_fullStr | Cryo–electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering |
title_full_unstemmed | Cryo–electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering |
title_short | Cryo–electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering |
title_sort | cryo–electron tomography reveals a critical role of rim1α in synaptic vesicle tethering |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664715/ https://www.ncbi.nlm.nih.gov/pubmed/23712261 http://dx.doi.org/10.1083/jcb.201206063 |
work_keys_str_mv | AT fernandezbusnadiegoruben cryoelectrontomographyrevealsacriticalroleofrim1ainsynapticvesicletethering AT asanoshoh cryoelectrontomographyrevealsacriticalroleofrim1ainsynapticvesicletethering AT oprisoreanuanamaria cryoelectrontomographyrevealsacriticalroleofrim1ainsynapticvesicletethering AT sakataeri cryoelectrontomographyrevealsacriticalroleofrim1ainsynapticvesicletethering AT doengimichael cryoelectrontomographyrevealsacriticalroleofrim1ainsynapticvesicletethering AT kochovskizdravko cryoelectrontomographyrevealsacriticalroleofrim1ainsynapticvesicletethering AT zurnermagdalena cryoelectrontomographyrevealsacriticalroleofrim1ainsynapticvesicletethering AT steinvalentin cryoelectrontomographyrevealsacriticalroleofrim1ainsynapticvesicletethering AT schochsusanne cryoelectrontomographyrevealsacriticalroleofrim1ainsynapticvesicletethering AT baumeisterwolfgang cryoelectrontomographyrevealsacriticalroleofrim1ainsynapticvesicletethering AT lucicvladan cryoelectrontomographyrevealsacriticalroleofrim1ainsynapticvesicletethering |