Cargando…

Cryo–electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering

Synaptic vesicles are embedded in a complex filamentous network at the presynaptic terminal. Before fusion, vesicles are linked to the active zone (AZ) by short filaments (tethers). The identity of the molecules that form and regulate tethers remains unknown, but Rab3-interacting molecule (RIM) is a...

Descripción completa

Detalles Bibliográficos
Autores principales: Fernández-Busnadiego, Rubén, Asano, Shoh, Oprisoreanu, Ana-Maria, Sakata, Eri, Doengi, Michael, Kochovski, Zdravko, Zürner, Magdalena, Stein, Valentin, Schoch, Susanne, Baumeister, Wolfgang, Lučić, Vladan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664715/
https://www.ncbi.nlm.nih.gov/pubmed/23712261
http://dx.doi.org/10.1083/jcb.201206063
_version_ 1782271146446553088
author Fernández-Busnadiego, Rubén
Asano, Shoh
Oprisoreanu, Ana-Maria
Sakata, Eri
Doengi, Michael
Kochovski, Zdravko
Zürner, Magdalena
Stein, Valentin
Schoch, Susanne
Baumeister, Wolfgang
Lučić, Vladan
author_facet Fernández-Busnadiego, Rubén
Asano, Shoh
Oprisoreanu, Ana-Maria
Sakata, Eri
Doengi, Michael
Kochovski, Zdravko
Zürner, Magdalena
Stein, Valentin
Schoch, Susanne
Baumeister, Wolfgang
Lučić, Vladan
author_sort Fernández-Busnadiego, Rubén
collection PubMed
description Synaptic vesicles are embedded in a complex filamentous network at the presynaptic terminal. Before fusion, vesicles are linked to the active zone (AZ) by short filaments (tethers). The identity of the molecules that form and regulate tethers remains unknown, but Rab3-interacting molecule (RIM) is a prominent candidate, given its central role in AZ organization. In this paper, we analyzed presynaptic architecture of RIM1α knockout (KO) mice by cryo–electron tomography. In stark contrast to previous work on dehydrated, chemically fixed samples, our data show significant alterations in vesicle distribution and AZ tethering that could provide a structural basis for the functional deficits of RIM1α KO synapses. Proteasome inhibition reversed these structural defects, suggesting a functional recovery confirmed by electrophysiological recordings. Altogether, our results not only point to the ubiquitin–proteasome system as an important regulator of presynaptic architecture and function but also show that the tethering machinery plays a critical role in exocytosis, converging into a structural model of synaptic vesicle priming by RIM1α.
format Online
Article
Text
id pubmed-3664715
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-36647152013-11-27 Cryo–electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering Fernández-Busnadiego, Rubén Asano, Shoh Oprisoreanu, Ana-Maria Sakata, Eri Doengi, Michael Kochovski, Zdravko Zürner, Magdalena Stein, Valentin Schoch, Susanne Baumeister, Wolfgang Lučić, Vladan J Cell Biol Research Articles Synaptic vesicles are embedded in a complex filamentous network at the presynaptic terminal. Before fusion, vesicles are linked to the active zone (AZ) by short filaments (tethers). The identity of the molecules that form and regulate tethers remains unknown, but Rab3-interacting molecule (RIM) is a prominent candidate, given its central role in AZ organization. In this paper, we analyzed presynaptic architecture of RIM1α knockout (KO) mice by cryo–electron tomography. In stark contrast to previous work on dehydrated, chemically fixed samples, our data show significant alterations in vesicle distribution and AZ tethering that could provide a structural basis for the functional deficits of RIM1α KO synapses. Proteasome inhibition reversed these structural defects, suggesting a functional recovery confirmed by electrophysiological recordings. Altogether, our results not only point to the ubiquitin–proteasome system as an important regulator of presynaptic architecture and function but also show that the tethering machinery plays a critical role in exocytosis, converging into a structural model of synaptic vesicle priming by RIM1α. The Rockefeller University Press 2013-05-27 /pmc/articles/PMC3664715/ /pubmed/23712261 http://dx.doi.org/10.1083/jcb.201206063 Text en © 2013 Fernández-Busnadiego et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).
spellingShingle Research Articles
Fernández-Busnadiego, Rubén
Asano, Shoh
Oprisoreanu, Ana-Maria
Sakata, Eri
Doengi, Michael
Kochovski, Zdravko
Zürner, Magdalena
Stein, Valentin
Schoch, Susanne
Baumeister, Wolfgang
Lučić, Vladan
Cryo–electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering
title Cryo–electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering
title_full Cryo–electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering
title_fullStr Cryo–electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering
title_full_unstemmed Cryo–electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering
title_short Cryo–electron tomography reveals a critical role of RIM1α in synaptic vesicle tethering
title_sort cryo–electron tomography reveals a critical role of rim1α in synaptic vesicle tethering
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664715/
https://www.ncbi.nlm.nih.gov/pubmed/23712261
http://dx.doi.org/10.1083/jcb.201206063
work_keys_str_mv AT fernandezbusnadiegoruben cryoelectrontomographyrevealsacriticalroleofrim1ainsynapticvesicletethering
AT asanoshoh cryoelectrontomographyrevealsacriticalroleofrim1ainsynapticvesicletethering
AT oprisoreanuanamaria cryoelectrontomographyrevealsacriticalroleofrim1ainsynapticvesicletethering
AT sakataeri cryoelectrontomographyrevealsacriticalroleofrim1ainsynapticvesicletethering
AT doengimichael cryoelectrontomographyrevealsacriticalroleofrim1ainsynapticvesicletethering
AT kochovskizdravko cryoelectrontomographyrevealsacriticalroleofrim1ainsynapticvesicletethering
AT zurnermagdalena cryoelectrontomographyrevealsacriticalroleofrim1ainsynapticvesicletethering
AT steinvalentin cryoelectrontomographyrevealsacriticalroleofrim1ainsynapticvesicletethering
AT schochsusanne cryoelectrontomographyrevealsacriticalroleofrim1ainsynapticvesicletethering
AT baumeisterwolfgang cryoelectrontomographyrevealsacriticalroleofrim1ainsynapticvesicletethering
AT lucicvladan cryoelectrontomographyrevealsacriticalroleofrim1ainsynapticvesicletethering