Cargando…
Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1
Transcription-blocking oxidative DNA damage is believed to contribute to aging and to underlie activation of oxidative stress responses and down-regulation of insulin-like signaling (ILS) in Nucleotide Excision Repair (NER) deficient mice. Here, we present the first quantitative proteomic descriptio...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664812/ https://www.ncbi.nlm.nih.gov/pubmed/23580547 http://dx.doi.org/10.1093/nar/gkt225 |
_version_ | 1782271167747325952 |
---|---|
author | Arczewska, Katarzyna D. Tomazella, Gisele G. Lindvall, Jessica M. Kassahun, Henok Maglioni, Silvia Torgovnick, Alessandro Henriksson, Johan Matilainen, Olli Marquis, Bryce J. Nelson, Bryant C. Jaruga, Pawel Babaie, Eshrat Holmberg, Carina I. Bürglin, Thomas R. Ventura, Natascia Thiede, Bernd Nilsen, Hilde |
author_facet | Arczewska, Katarzyna D. Tomazella, Gisele G. Lindvall, Jessica M. Kassahun, Henok Maglioni, Silvia Torgovnick, Alessandro Henriksson, Johan Matilainen, Olli Marquis, Bryce J. Nelson, Bryant C. Jaruga, Pawel Babaie, Eshrat Holmberg, Carina I. Bürglin, Thomas R. Ventura, Natascia Thiede, Bernd Nilsen, Hilde |
author_sort | Arczewska, Katarzyna D. |
collection | PubMed |
description | Transcription-blocking oxidative DNA damage is believed to contribute to aging and to underlie activation of oxidative stress responses and down-regulation of insulin-like signaling (ILS) in Nucleotide Excision Repair (NER) deficient mice. Here, we present the first quantitative proteomic description of the Caenorhabditis elegans NER-defective xpa-1 mutant and compare the proteome and transcriptome signatures. Both methods indicated activation of oxidative stress responses, which was substantiated biochemically by a bioenergetic shift involving increased steady-state reactive oxygen species (ROS) and Adenosine triphosphate (ATP) levels. We identify the lesion-detection enzymes of Base Excision Repair (NTH-1) and global genome NER (XPC-1 and DDB-1) as upstream requirements for transcriptomic reprogramming as RNA-interference mediated depletion of these enzymes prevented up-regulation of genes over-expressed in the xpa-1 mutant. The transcription factors SKN-1 and SLR-2, but not DAF-16, were identified as effectors of reprogramming. As shown in human XPA cells, the levels of transcription-blocking 8,5'-cyclo-2'-deoxyadenosine lesions were reduced in the xpa-1 mutant compared to the wild type. Hence, accumulation of cyclopurines is unlikely to be sufficient for reprogramming. Instead, our data support a model where the lesion-detection enzymes NTH-1, XPC-1 and DDB-1 play active roles to generate a genomic stress signal sufficiently strong to result in transcriptomic reprogramming in the xpa-1 mutant. |
format | Online Article Text |
id | pubmed-3664812 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-36648122013-05-28 Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1 Arczewska, Katarzyna D. Tomazella, Gisele G. Lindvall, Jessica M. Kassahun, Henok Maglioni, Silvia Torgovnick, Alessandro Henriksson, Johan Matilainen, Olli Marquis, Bryce J. Nelson, Bryant C. Jaruga, Pawel Babaie, Eshrat Holmberg, Carina I. Bürglin, Thomas R. Ventura, Natascia Thiede, Bernd Nilsen, Hilde Nucleic Acids Res Genome Integrity, Repair and Replication Transcription-blocking oxidative DNA damage is believed to contribute to aging and to underlie activation of oxidative stress responses and down-regulation of insulin-like signaling (ILS) in Nucleotide Excision Repair (NER) deficient mice. Here, we present the first quantitative proteomic description of the Caenorhabditis elegans NER-defective xpa-1 mutant and compare the proteome and transcriptome signatures. Both methods indicated activation of oxidative stress responses, which was substantiated biochemically by a bioenergetic shift involving increased steady-state reactive oxygen species (ROS) and Adenosine triphosphate (ATP) levels. We identify the lesion-detection enzymes of Base Excision Repair (NTH-1) and global genome NER (XPC-1 and DDB-1) as upstream requirements for transcriptomic reprogramming as RNA-interference mediated depletion of these enzymes prevented up-regulation of genes over-expressed in the xpa-1 mutant. The transcription factors SKN-1 and SLR-2, but not DAF-16, were identified as effectors of reprogramming. As shown in human XPA cells, the levels of transcription-blocking 8,5'-cyclo-2'-deoxyadenosine lesions were reduced in the xpa-1 mutant compared to the wild type. Hence, accumulation of cyclopurines is unlikely to be sufficient for reprogramming. Instead, our data support a model where the lesion-detection enzymes NTH-1, XPC-1 and DDB-1 play active roles to generate a genomic stress signal sufficiently strong to result in transcriptomic reprogramming in the xpa-1 mutant. Oxford University Press 2013-05 2013-04-10 /pmc/articles/PMC3664812/ /pubmed/23580547 http://dx.doi.org/10.1093/nar/gkt225 Text en © The Author(s) 2013. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Genome Integrity, Repair and Replication Arczewska, Katarzyna D. Tomazella, Gisele G. Lindvall, Jessica M. Kassahun, Henok Maglioni, Silvia Torgovnick, Alessandro Henriksson, Johan Matilainen, Olli Marquis, Bryce J. Nelson, Bryant C. Jaruga, Pawel Babaie, Eshrat Holmberg, Carina I. Bürglin, Thomas R. Ventura, Natascia Thiede, Bernd Nilsen, Hilde Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1 |
title | Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1 |
title_full | Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1 |
title_fullStr | Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1 |
title_full_unstemmed | Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1 |
title_short | Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1 |
title_sort | active transcriptomic and proteomic reprogramming in the c. elegans nucleotide excision repair mutant xpa-1 |
topic | Genome Integrity, Repair and Replication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664812/ https://www.ncbi.nlm.nih.gov/pubmed/23580547 http://dx.doi.org/10.1093/nar/gkt225 |
work_keys_str_mv | AT arczewskakatarzynad activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1 AT tomazellagiseleg activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1 AT lindvalljessicam activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1 AT kassahunhenok activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1 AT maglionisilvia activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1 AT torgovnickalessandro activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1 AT henrikssonjohan activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1 AT matilainenolli activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1 AT marquisbrycej activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1 AT nelsonbryantc activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1 AT jarugapawel activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1 AT babaieeshrat activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1 AT holmbergcarinai activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1 AT burglinthomasr activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1 AT venturanatascia activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1 AT thiedebernd activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1 AT nilsenhilde activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1 |