Cargando…

Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1

Transcription-blocking oxidative DNA damage is believed to contribute to aging and to underlie activation of oxidative stress responses and down-regulation of insulin-like signaling (ILS) in Nucleotide Excision Repair (NER) deficient mice. Here, we present the first quantitative proteomic descriptio...

Descripción completa

Detalles Bibliográficos
Autores principales: Arczewska, Katarzyna D., Tomazella, Gisele G., Lindvall, Jessica M., Kassahun, Henok, Maglioni, Silvia, Torgovnick, Alessandro, Henriksson, Johan, Matilainen, Olli, Marquis, Bryce J., Nelson, Bryant C., Jaruga, Pawel, Babaie, Eshrat, Holmberg, Carina I., Bürglin, Thomas R., Ventura, Natascia, Thiede, Bernd, Nilsen, Hilde
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664812/
https://www.ncbi.nlm.nih.gov/pubmed/23580547
http://dx.doi.org/10.1093/nar/gkt225
_version_ 1782271167747325952
author Arczewska, Katarzyna D.
Tomazella, Gisele G.
Lindvall, Jessica M.
Kassahun, Henok
Maglioni, Silvia
Torgovnick, Alessandro
Henriksson, Johan
Matilainen, Olli
Marquis, Bryce J.
Nelson, Bryant C.
Jaruga, Pawel
Babaie, Eshrat
Holmberg, Carina I.
Bürglin, Thomas R.
Ventura, Natascia
Thiede, Bernd
Nilsen, Hilde
author_facet Arczewska, Katarzyna D.
Tomazella, Gisele G.
Lindvall, Jessica M.
Kassahun, Henok
Maglioni, Silvia
Torgovnick, Alessandro
Henriksson, Johan
Matilainen, Olli
Marquis, Bryce J.
Nelson, Bryant C.
Jaruga, Pawel
Babaie, Eshrat
Holmberg, Carina I.
Bürglin, Thomas R.
Ventura, Natascia
Thiede, Bernd
Nilsen, Hilde
author_sort Arczewska, Katarzyna D.
collection PubMed
description Transcription-blocking oxidative DNA damage is believed to contribute to aging and to underlie activation of oxidative stress responses and down-regulation of insulin-like signaling (ILS) in Nucleotide Excision Repair (NER) deficient mice. Here, we present the first quantitative proteomic description of the Caenorhabditis elegans NER-defective xpa-1 mutant and compare the proteome and transcriptome signatures. Both methods indicated activation of oxidative stress responses, which was substantiated biochemically by a bioenergetic shift involving increased steady-state reactive oxygen species (ROS) and Adenosine triphosphate (ATP) levels. We identify the lesion-detection enzymes of Base Excision Repair (NTH-1) and global genome NER (XPC-1 and DDB-1) as upstream requirements for transcriptomic reprogramming as RNA-interference mediated depletion of these enzymes prevented up-regulation of genes over-expressed in the xpa-1 mutant. The transcription factors SKN-1 and SLR-2, but not DAF-16, were identified as effectors of reprogramming. As shown in human XPA cells, the levels of transcription-blocking 8,5'-cyclo-2'-deoxyadenosine lesions were reduced in the xpa-1 mutant compared to the wild type. Hence, accumulation of cyclopurines is unlikely to be sufficient for reprogramming. Instead, our data support a model where the lesion-detection enzymes NTH-1, XPC-1 and DDB-1 play active roles to generate a genomic stress signal sufficiently strong to result in transcriptomic reprogramming in the xpa-1 mutant.
format Online
Article
Text
id pubmed-3664812
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-36648122013-05-28 Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1 Arczewska, Katarzyna D. Tomazella, Gisele G. Lindvall, Jessica M. Kassahun, Henok Maglioni, Silvia Torgovnick, Alessandro Henriksson, Johan Matilainen, Olli Marquis, Bryce J. Nelson, Bryant C. Jaruga, Pawel Babaie, Eshrat Holmberg, Carina I. Bürglin, Thomas R. Ventura, Natascia Thiede, Bernd Nilsen, Hilde Nucleic Acids Res Genome Integrity, Repair and Replication Transcription-blocking oxidative DNA damage is believed to contribute to aging and to underlie activation of oxidative stress responses and down-regulation of insulin-like signaling (ILS) in Nucleotide Excision Repair (NER) deficient mice. Here, we present the first quantitative proteomic description of the Caenorhabditis elegans NER-defective xpa-1 mutant and compare the proteome and transcriptome signatures. Both methods indicated activation of oxidative stress responses, which was substantiated biochemically by a bioenergetic shift involving increased steady-state reactive oxygen species (ROS) and Adenosine triphosphate (ATP) levels. We identify the lesion-detection enzymes of Base Excision Repair (NTH-1) and global genome NER (XPC-1 and DDB-1) as upstream requirements for transcriptomic reprogramming as RNA-interference mediated depletion of these enzymes prevented up-regulation of genes over-expressed in the xpa-1 mutant. The transcription factors SKN-1 and SLR-2, but not DAF-16, were identified as effectors of reprogramming. As shown in human XPA cells, the levels of transcription-blocking 8,5'-cyclo-2'-deoxyadenosine lesions were reduced in the xpa-1 mutant compared to the wild type. Hence, accumulation of cyclopurines is unlikely to be sufficient for reprogramming. Instead, our data support a model where the lesion-detection enzymes NTH-1, XPC-1 and DDB-1 play active roles to generate a genomic stress signal sufficiently strong to result in transcriptomic reprogramming in the xpa-1 mutant. Oxford University Press 2013-05 2013-04-10 /pmc/articles/PMC3664812/ /pubmed/23580547 http://dx.doi.org/10.1093/nar/gkt225 Text en © The Author(s) 2013. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Genome Integrity, Repair and Replication
Arczewska, Katarzyna D.
Tomazella, Gisele G.
Lindvall, Jessica M.
Kassahun, Henok
Maglioni, Silvia
Torgovnick, Alessandro
Henriksson, Johan
Matilainen, Olli
Marquis, Bryce J.
Nelson, Bryant C.
Jaruga, Pawel
Babaie, Eshrat
Holmberg, Carina I.
Bürglin, Thomas R.
Ventura, Natascia
Thiede, Bernd
Nilsen, Hilde
Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1
title Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1
title_full Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1
title_fullStr Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1
title_full_unstemmed Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1
title_short Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1
title_sort active transcriptomic and proteomic reprogramming in the c. elegans nucleotide excision repair mutant xpa-1
topic Genome Integrity, Repair and Replication
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664812/
https://www.ncbi.nlm.nih.gov/pubmed/23580547
http://dx.doi.org/10.1093/nar/gkt225
work_keys_str_mv AT arczewskakatarzynad activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1
AT tomazellagiseleg activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1
AT lindvalljessicam activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1
AT kassahunhenok activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1
AT maglionisilvia activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1
AT torgovnickalessandro activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1
AT henrikssonjohan activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1
AT matilainenolli activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1
AT marquisbrycej activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1
AT nelsonbryantc activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1
AT jarugapawel activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1
AT babaieeshrat activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1
AT holmbergcarinai activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1
AT burglinthomasr activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1
AT venturanatascia activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1
AT thiedebernd activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1
AT nilsenhilde activetranscriptomicandproteomicreprogramminginthecelegansnucleotideexcisionrepairmutantxpa1