Cargando…
Revealing selection in cancer using the predicted functional impact of cancer mutations. Application to nomination of cancer drivers
Every malignant tumor has a unique spectrum of genomic alterations including numerous protein mutations. There are also hundreds of personal germline variants to be taken into account. The combinatorial diversity of potential cancer-driving events limits the applicability of statistical methods to d...
Autor principal: | Reva, B |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3665576/ https://www.ncbi.nlm.nih.gov/pubmed/23819556 http://dx.doi.org/10.1186/1471-2164-14-S3-S8 |
Ejemplares similares
-
Predicting the functional impact of protein mutations: application to cancer genomics
por: Reva, Boris, et al.
Publicado: (2011) -
Functional impact bias reveals cancer drivers
por: Gonzalez-Perez, Abel, et al.
Publicado: (2012) -
The effects of mutational processes and selection on driver mutations across cancer types
por: Temko, Daniel, et al.
Publicado: (2018) -
Nominated Texture Based Cervical Cancer Classification
por: Mariarputham, Edwin Jayasingh, et al.
Publicado: (2015) -
Invitation for Nominations/Applications for 2021
Publicado: (2021)