Cargando…

Human Skin Keratinocytes Can Be Reprogrammed to Express Neuronal Genes and Proteins After a Single Treatment with Decitabine

Patient-specific cell replacement therapy is fast becoming the future of medicine, requiring safe, effective methods for reprogramming a patient's own cells. Previously, we showed that a single transient transfection with a plasmid encoding Oct4 was sufficient to reprogram human skin keratinocy...

Descripción completa

Detalles Bibliográficos
Autores principales: Bickenbach, Jackie R., Tomanek-Chalkley, Ann, Wiechert, Susan, Winter, Michael C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Mary Ann Liebert, Inc. 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3666219/
https://www.ncbi.nlm.nih.gov/pubmed/23741634
http://dx.doi.org/10.1089/biores.2012.0298
Descripción
Sumario:Patient-specific cell replacement therapy is fast becoming the future of medicine, requiring safe, effective methods for reprogramming a patient's own cells. Previously, we showed that a single transient transfection with a plasmid encoding Oct4 was sufficient to reprogram human skin keratinocytes (HSKs), and that this transfection resulted in a decrease in global DNA methylation. In more recent work we showed that decreasing global DNA methylation using the U.S. Food and Drug Administration–approved cancer treatment drug decitabine was sufficient to induce expression of endogenous Oct4. Here we report that a single treatment with decitabine, followed by 5 days in a defined neuronal transformation medium, then 7 days in a neuronal maintenance medium is sufficient to convert HSKs into cells that change their morphology substantially, gain expression of neuronal markers, and lose expression of keratinocyte markers. Within 1 week of treatment the cells express mRNA for β3-tubulin and doublecortin, and at the end of 2 weeks express mRNA for NeuN, FOXP2, and NCAM1. Additionally, at the end of this protocol, neurofilament-1, nestin, synapsin, FOXP2, and GluR1 proteins are detectable by immunostaining. Thus, we demonstrate a simple method that begins the process for producing cells for cell replacement therapies without using exogenously introduced DNA.