Cargando…

Testosterone-derived estradiol production by male endothelium is robust and dependent on p450 aromatase via estrogen receptor alpha

Vascular endothelium expresses both the estrogen receptors (ERs) α and β, and ERα mediates development of early atherosclerosis in male mice. This process is thought to be testosterone-dependent. We hypothesized that male murine aortic endothelium produces robust levels of estradiol by aromatase con...

Descripción completa

Detalles Bibliográficos
Autores principales: Villablanca, Amparo C, Tetali, Sarada, Altman, Robin, Ng, Kenneth F, Rutledge, John C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667361/
https://www.ncbi.nlm.nih.gov/pubmed/23741647
http://dx.doi.org/10.1186/2193-1801-2-214
Descripción
Sumario:Vascular endothelium expresses both the estrogen receptors (ERs) α and β, and ERα mediates development of early atherosclerosis in male mice. This process is thought to be testosterone-dependent. We hypothesized that male murine aortic endothelium produces robust levels of estradiol by aromatase conversion of testosterone, and that regulation of this process is mediated by the presence of ERs, primarily ERα. Aortic endothelium was isolated from ERα knockout (ERα -/-) and wild-type (ERα +/+) male mice and treated with testosterone or the 5α reduction product dihydrotestosterone (DHT), with or without the P450 aromatase inhibitor anastrazole, or a non-specific estrogen receptor antagonist. Aromatase gene expression and estradiol production were assayed. Treatment with testosterone, but not DHT, caused increased aromatase expression and estradiol production in ERα +/+ endothelium that was attenuated by disruption of ERα in the ERα -/- group. Anastrazole inhibition of aromatase reduced testosterone-induced aromatase expression and estradiol levels in both ERα -/- and ERα +/+ endothelium. Antagonism of both ERs decreased testosterone-induced aromatase expression in both wild-type and knockout groups. The effects of the receptor antagonist on estradiol production differed between the two groups, however, with a reduction in estradiol release from the ERα +/+ cells and complete abolition of estradiol release from the ERα -/- cells. Thus, estradiol production in vascular endothelium from male mice is robust, depends on the aromatic conversion of testosterone and requires functional ERα to achieve maximal levels of estradiol generation. Local vascular production of aromatase-mediated estradiol in response to circulating testosterone may affect ERα-dependent mechanisms to increase susceptibility to early atheroma formation in male mice. This pathway may have important therapeutic relevance for reducing the risk of atherosclerotic cardiovascular disease in human males. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/2193-1801-2-214) contains supplementary material, which is available to authorized users.