Cargando…
1,25-Dihydroxyvitamin D(3) Inhibits Podocyte uPAR Expression and Reduces Proteinuria
BACKGROUND: Accumulating studies have demonstrated that 1,25-Dihydroxyvitamin D(3) (1,25(OH)2D3) reduces proteinuria and protects podocytes from injury. Recently, urokinase receptor (uPAR) and its soluble form have been shown to cause podocyte injury and focal segmental glomerulosclerosis (FSGS). He...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3669128/ https://www.ncbi.nlm.nih.gov/pubmed/23741418 http://dx.doi.org/10.1371/journal.pone.0064912 |
_version_ | 1782271703864311808 |
---|---|
author | Ma, Jianchao Zhang, Bin Liu, Shuangxin Xie, Shaoting Yang, Yun Ma, Juan Deng, Yujun Wang, Wenjian Xu, Lixia Li, Ruizhao Zhang, Li Yu, Chunping Shi, Wei |
author_facet | Ma, Jianchao Zhang, Bin Liu, Shuangxin Xie, Shaoting Yang, Yun Ma, Juan Deng, Yujun Wang, Wenjian Xu, Lixia Li, Ruizhao Zhang, Li Yu, Chunping Shi, Wei |
author_sort | Ma, Jianchao |
collection | PubMed |
description | BACKGROUND: Accumulating studies have demonstrated that 1,25-Dihydroxyvitamin D(3) (1,25(OH)2D3) reduces proteinuria and protects podocytes from injury. Recently, urokinase receptor (uPAR) and its soluble form have been shown to cause podocyte injury and focal segmental glomerulosclerosis (FSGS). Here, our findings showed that 1,25(OH)2D3 did inhibit podocyte uPAR expression and attenuate proteinuria and podocyte injury. METHODOLOGY/PRINCIPAL FINDINGS: In this study, the antiproteinuric effect of 1,25(OH)2D3 was examined in the lipopolysaccharide mice model of transient proteinuria (LPS mice) and in the 5/6 nephrectomy rat FSGS model(NTX rats). uPAR protein expression were tested by flow cytometry, immune cytochemistry and western blot analysis, and uPAR mRNA expression by real-time quantitative PCR in cultured podocytes and kidney glomeruli isolated from mice and rats. Podocyte motility was observed by transwell migration assay and wound healing assay. Podocyte foot processes effacement was identified by transmission electron microscopy. We found that 1,25(OH)2D3 inhibited podocyte uPAR mRNA and protein synthesis in LPS-treated podocytes, LPS mice and NTX rats, along with 1,25(OH)2D3 reducing proteinuria in NTX rats and LPS mice.1,25(OH)2D3 reduced glomerulosclerosis in NTX rats and alleviated podocyte foot processes effacement in LPS mice. Transwell migration assay and wound healing assay showed that LPS-induced podocyte motility, irrespective of random or directed motility, were substantially reduced by 1,25(OH)2D3. CONCLUSIONS/SIGNIFICANCE: Our results demonstrated that 1,25(OH)2D3 inhibited podocyte uPAR expression in vitro and in vivo, which may be an unanticipated off target effect of 1,25(OH)2D3 and explain its antiproteinuric effect in the 5/6 nephrectomy rat FSGS model and the LPS mouse model of transient proteinuria. |
format | Online Article Text |
id | pubmed-3669128 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36691282013-06-05 1,25-Dihydroxyvitamin D(3) Inhibits Podocyte uPAR Expression and Reduces Proteinuria Ma, Jianchao Zhang, Bin Liu, Shuangxin Xie, Shaoting Yang, Yun Ma, Juan Deng, Yujun Wang, Wenjian Xu, Lixia Li, Ruizhao Zhang, Li Yu, Chunping Shi, Wei PLoS One Research Article BACKGROUND: Accumulating studies have demonstrated that 1,25-Dihydroxyvitamin D(3) (1,25(OH)2D3) reduces proteinuria and protects podocytes from injury. Recently, urokinase receptor (uPAR) and its soluble form have been shown to cause podocyte injury and focal segmental glomerulosclerosis (FSGS). Here, our findings showed that 1,25(OH)2D3 did inhibit podocyte uPAR expression and attenuate proteinuria and podocyte injury. METHODOLOGY/PRINCIPAL FINDINGS: In this study, the antiproteinuric effect of 1,25(OH)2D3 was examined in the lipopolysaccharide mice model of transient proteinuria (LPS mice) and in the 5/6 nephrectomy rat FSGS model(NTX rats). uPAR protein expression were tested by flow cytometry, immune cytochemistry and western blot analysis, and uPAR mRNA expression by real-time quantitative PCR in cultured podocytes and kidney glomeruli isolated from mice and rats. Podocyte motility was observed by transwell migration assay and wound healing assay. Podocyte foot processes effacement was identified by transmission electron microscopy. We found that 1,25(OH)2D3 inhibited podocyte uPAR mRNA and protein synthesis in LPS-treated podocytes, LPS mice and NTX rats, along with 1,25(OH)2D3 reducing proteinuria in NTX rats and LPS mice.1,25(OH)2D3 reduced glomerulosclerosis in NTX rats and alleviated podocyte foot processes effacement in LPS mice. Transwell migration assay and wound healing assay showed that LPS-induced podocyte motility, irrespective of random or directed motility, were substantially reduced by 1,25(OH)2D3. CONCLUSIONS/SIGNIFICANCE: Our results demonstrated that 1,25(OH)2D3 inhibited podocyte uPAR expression in vitro and in vivo, which may be an unanticipated off target effect of 1,25(OH)2D3 and explain its antiproteinuric effect in the 5/6 nephrectomy rat FSGS model and the LPS mouse model of transient proteinuria. Public Library of Science 2013-05-31 /pmc/articles/PMC3669128/ /pubmed/23741418 http://dx.doi.org/10.1371/journal.pone.0064912 Text en © 2013 Ma et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Ma, Jianchao Zhang, Bin Liu, Shuangxin Xie, Shaoting Yang, Yun Ma, Juan Deng, Yujun Wang, Wenjian Xu, Lixia Li, Ruizhao Zhang, Li Yu, Chunping Shi, Wei 1,25-Dihydroxyvitamin D(3) Inhibits Podocyte uPAR Expression and Reduces Proteinuria |
title | 1,25-Dihydroxyvitamin D(3) Inhibits Podocyte uPAR Expression and Reduces Proteinuria |
title_full | 1,25-Dihydroxyvitamin D(3) Inhibits Podocyte uPAR Expression and Reduces Proteinuria |
title_fullStr | 1,25-Dihydroxyvitamin D(3) Inhibits Podocyte uPAR Expression and Reduces Proteinuria |
title_full_unstemmed | 1,25-Dihydroxyvitamin D(3) Inhibits Podocyte uPAR Expression and Reduces Proteinuria |
title_short | 1,25-Dihydroxyvitamin D(3) Inhibits Podocyte uPAR Expression and Reduces Proteinuria |
title_sort | 1,25-dihydroxyvitamin d(3) inhibits podocyte upar expression and reduces proteinuria |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3669128/ https://www.ncbi.nlm.nih.gov/pubmed/23741418 http://dx.doi.org/10.1371/journal.pone.0064912 |
work_keys_str_mv | AT majianchao 125dihydroxyvitamind3inhibitspodocyteuparexpressionandreducesproteinuria AT zhangbin 125dihydroxyvitamind3inhibitspodocyteuparexpressionandreducesproteinuria AT liushuangxin 125dihydroxyvitamind3inhibitspodocyteuparexpressionandreducesproteinuria AT xieshaoting 125dihydroxyvitamind3inhibitspodocyteuparexpressionandreducesproteinuria AT yangyun 125dihydroxyvitamind3inhibitspodocyteuparexpressionandreducesproteinuria AT majuan 125dihydroxyvitamind3inhibitspodocyteuparexpressionandreducesproteinuria AT dengyujun 125dihydroxyvitamind3inhibitspodocyteuparexpressionandreducesproteinuria AT wangwenjian 125dihydroxyvitamind3inhibitspodocyteuparexpressionandreducesproteinuria AT xulixia 125dihydroxyvitamind3inhibitspodocyteuparexpressionandreducesproteinuria AT liruizhao 125dihydroxyvitamind3inhibitspodocyteuparexpressionandreducesproteinuria AT zhangli 125dihydroxyvitamind3inhibitspodocyteuparexpressionandreducesproteinuria AT yuchunping 125dihydroxyvitamind3inhibitspodocyteuparexpressionandreducesproteinuria AT shiwei 125dihydroxyvitamind3inhibitspodocyteuparexpressionandreducesproteinuria |