Cargando…
Allele-specific programming of Npy and epigenetic effects of physical activity in a genetic model of depression
Neuropeptide Y (NPY) has been implicated in depression, emotional processing and stress response. Part of this evidence originates from human single-nucleotide polymorphism (SNP) studies. In the present study, we report that a SNP in the rat Npy promoter (C/T; rs105431668) affects in vitro transcrip...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3669918/ https://www.ncbi.nlm.nih.gov/pubmed/23652932 http://dx.doi.org/10.1038/tp.2013.31 |
_version_ | 1782271807154290688 |
---|---|
author | Melas, P A Lennartsson, A Vakifahmetoglu-Norberg, H Wei, Y Åberg, E Werme, M Rogdaki, M Mannervik, M Wegener, G Brené, S Mathé, A A Lavebratt, C |
author_facet | Melas, P A Lennartsson, A Vakifahmetoglu-Norberg, H Wei, Y Åberg, E Werme, M Rogdaki, M Mannervik, M Wegener, G Brené, S Mathé, A A Lavebratt, C |
author_sort | Melas, P A |
collection | PubMed |
description | Neuropeptide Y (NPY) has been implicated in depression, emotional processing and stress response. Part of this evidence originates from human single-nucleotide polymorphism (SNP) studies. In the present study, we report that a SNP in the rat Npy promoter (C/T; rs105431668) affects in vitro transcription and DNA–protein interactions. Genotyping studies showed that the C-allele of rs105431668 is present in a genetic rat model of depression (Flinders sensitive line; FSL), while the SNP's T-allele is present in its controls (Flinders resistant line; FRL). In vivo experiments revealed binding of a transcription factor (CREB2) and a histone acetyltransferase (Ep300) only at the SNP locus of the FRL. Accordingly, the FRL had increased hippocampal levels of Npy mRNA and H3K18 acetylation; a gene-activating histone modification maintained by Ep300. Next, based on previous studies showing antidepressant-like effects of physical activity in the FSL, we hypothesized that physical activity may affect Npy's epigenetic status. In line with this assumption, physical activity was associated with increased levels of Npy mRNA and H3K18 acetylation. Physical activity was also associated with reduced mRNA levels of a histone deacetylase (Hdac5). Conclusively, the rat rs105431668 appears to be a functional Npy SNP that may underlie depression-like characteristics. In addition, the achieved epigenetic reprogramming of Npy provides molecular support for the putative effectiveness of physical activity as a non-pharmacological antidepressant. |
format | Online Article Text |
id | pubmed-3669918 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-36699182013-06-03 Allele-specific programming of Npy and epigenetic effects of physical activity in a genetic model of depression Melas, P A Lennartsson, A Vakifahmetoglu-Norberg, H Wei, Y Åberg, E Werme, M Rogdaki, M Mannervik, M Wegener, G Brené, S Mathé, A A Lavebratt, C Transl Psychiatry Original Article Neuropeptide Y (NPY) has been implicated in depression, emotional processing and stress response. Part of this evidence originates from human single-nucleotide polymorphism (SNP) studies. In the present study, we report that a SNP in the rat Npy promoter (C/T; rs105431668) affects in vitro transcription and DNA–protein interactions. Genotyping studies showed that the C-allele of rs105431668 is present in a genetic rat model of depression (Flinders sensitive line; FSL), while the SNP's T-allele is present in its controls (Flinders resistant line; FRL). In vivo experiments revealed binding of a transcription factor (CREB2) and a histone acetyltransferase (Ep300) only at the SNP locus of the FRL. Accordingly, the FRL had increased hippocampal levels of Npy mRNA and H3K18 acetylation; a gene-activating histone modification maintained by Ep300. Next, based on previous studies showing antidepressant-like effects of physical activity in the FSL, we hypothesized that physical activity may affect Npy's epigenetic status. In line with this assumption, physical activity was associated with increased levels of Npy mRNA and H3K18 acetylation. Physical activity was also associated with reduced mRNA levels of a histone deacetylase (Hdac5). Conclusively, the rat rs105431668 appears to be a functional Npy SNP that may underlie depression-like characteristics. In addition, the achieved epigenetic reprogramming of Npy provides molecular support for the putative effectiveness of physical activity as a non-pharmacological antidepressant. Nature Publishing Group 2013-05 2013-05-07 /pmc/articles/PMC3669918/ /pubmed/23652932 http://dx.doi.org/10.1038/tp.2013.31 Text en Copyright © 2013 Macmillan Publishers Limited http://creativecommons.org/licenses/by-nc-sa/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ |
spellingShingle | Original Article Melas, P A Lennartsson, A Vakifahmetoglu-Norberg, H Wei, Y Åberg, E Werme, M Rogdaki, M Mannervik, M Wegener, G Brené, S Mathé, A A Lavebratt, C Allele-specific programming of Npy and epigenetic effects of physical activity in a genetic model of depression |
title | Allele-specific programming of Npy and epigenetic effects of physical activity in a genetic model of depression |
title_full | Allele-specific programming of Npy and epigenetic effects of physical activity in a genetic model of depression |
title_fullStr | Allele-specific programming of Npy and epigenetic effects of physical activity in a genetic model of depression |
title_full_unstemmed | Allele-specific programming of Npy and epigenetic effects of physical activity in a genetic model of depression |
title_short | Allele-specific programming of Npy and epigenetic effects of physical activity in a genetic model of depression |
title_sort | allele-specific programming of npy and epigenetic effects of physical activity in a genetic model of depression |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3669918/ https://www.ncbi.nlm.nih.gov/pubmed/23652932 http://dx.doi.org/10.1038/tp.2013.31 |
work_keys_str_mv | AT melaspa allelespecificprogrammingofnpyandepigeneticeffectsofphysicalactivityinageneticmodelofdepression AT lennartssona allelespecificprogrammingofnpyandepigeneticeffectsofphysicalactivityinageneticmodelofdepression AT vakifahmetoglunorbergh allelespecificprogrammingofnpyandepigeneticeffectsofphysicalactivityinageneticmodelofdepression AT weiy allelespecificprogrammingofnpyandepigeneticeffectsofphysicalactivityinageneticmodelofdepression AT aberge allelespecificprogrammingofnpyandepigeneticeffectsofphysicalactivityinageneticmodelofdepression AT wermem allelespecificprogrammingofnpyandepigeneticeffectsofphysicalactivityinageneticmodelofdepression AT rogdakim allelespecificprogrammingofnpyandepigeneticeffectsofphysicalactivityinageneticmodelofdepression AT mannervikm allelespecificprogrammingofnpyandepigeneticeffectsofphysicalactivityinageneticmodelofdepression AT wegenerg allelespecificprogrammingofnpyandepigeneticeffectsofphysicalactivityinageneticmodelofdepression AT brenes allelespecificprogrammingofnpyandepigeneticeffectsofphysicalactivityinageneticmodelofdepression AT matheaa allelespecificprogrammingofnpyandepigeneticeffectsofphysicalactivityinageneticmodelofdepression AT lavebrattc allelespecificprogrammingofnpyandepigeneticeffectsofphysicalactivityinageneticmodelofdepression |