Cargando…
Co-regulation of intragenic microRNA miR-153 and its host gene Ia-2β: identification of miR-153 target genes with functions related to IA-2β in pancreas and brain
AIMS/HYPOTHESIS: We analysed the genomic organisation of miR-153, a microRNA embedded in genes that encode two of the major type 1 diabetes autoantigens, islet-associated protein (IA)-2 and IA-2β. We also identified miR-153 target genes that correlated with IA-2β localisation and function. METHODS:...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3671108/ https://www.ncbi.nlm.nih.gov/pubmed/23595248 http://dx.doi.org/10.1007/s00125-013-2901-5 |
Sumario: | AIMS/HYPOTHESIS: We analysed the genomic organisation of miR-153, a microRNA embedded in genes that encode two of the major type 1 diabetes autoantigens, islet-associated protein (IA)-2 and IA-2β. We also identified miR-153 target genes that correlated with IA-2β localisation and function. METHODS: A bioinformatics approach was used to identify miR-153’s genomic organisation. To analyse the co-regulation of miR-153 and IA-2β, quantitative PCR analysis of miR-153 and Ia-2β (also known as Ptprn2) was performed after a glucose stimulation assay in MIN6B cells and isolated murine pancreatic islets, and also in wild-type Ia-2 (also known as Ptprn), Ia-2β single knockout and Ia-2/Ia-2β double knockout mouse brain and pancreatic islets. Bioinformatics identification of miR-153 target genes and validation via luciferase reporter assays, western blotting and quantitative PCR were also carried out. RESULTS: Two copies of miR-153, miR-153-1 and miR-153-2, are localised in intron 19 of Ia-2 and Ia-2β, respectively. In rodents, only miR-153-2 is conserved. We demonstrated that expression of miR-153-2 and Ia-2β in rodents is partially co-regulated as demonstrated by a strong reduction of miR-153 expression levels in Ia-2β knockout and Ia-2/Ia-2β double knockout mice. miR-153 levels were unaffected in Ia-2 knockout mice. In addition, glucose stimulation, which increases Ia-2 and Ia-2β expression, also significantly increased expression of miR-153. Several predicted targets of miR-153 were reduced after glucose stimulation in vitro, correlating with the increase in miR-153 levels. CONCLUSIONS/INTERPRETATION: This study suggests the involvement of miR-153, IA-2β and miR-153 target genes in a regulatory network, which is potentially relevant to insulin and neurotransmitter release. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00125-013-2901-5) contains peer-reviewed but unedited supplementary material, which is available to authorised users. |
---|