Cargando…
Leveraging Prior Information to Detect Causal Variants via Multi-Variant Regression
Although many methods are available to test sequence variants for association with complex diseases and traits, methods that specifically seek to identify causal variants are less developed. Here we develop and evaluate a Bayesian hierarchical regression method that incorporates prior information on...
Autores principales: | Long, Nanye, Dickson, Samuel P., Maia, Jessica M., Kim, Hee Shin, Zhu, Qianqian, Allen, Andrew S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3675126/ https://www.ncbi.nlm.nih.gov/pubmed/23762022 http://dx.doi.org/10.1371/journal.pcbi.1003093 |
Ejemplares similares
-
Eliciting priors and relaxing the single causal variant assumption in colocalisation analyses
por: Wallace, Chris
Publicado: (2020) -
Multi-resolution localization of causal variants across the genome
por: Sesia, Matteo, et al.
Publicado: (2020) -
Determining Genetic Causal Variants Through Multivariate Regression Using Mixture Model Penalty
por: Sundar, V. S., et al.
Publicado: (2018) -
Impact of structural prior knowledge in SNV prediction: Towards causal variant finding in rare disease
por: Dehiya, Vasundhara, et al.
Publicado: (2018) -
INFIMA leverages multi-omics model organism data to identify effector genes of human GWAS variants
por: Dong, Chenyang, et al.
Publicado: (2021)