Cargando…

Microtubule dynamic instability: A new model with coupled GTP hydrolysis and multistep catastrophe

A key question in understanding microtubule dynamics is how GTP hydrolysis leads to catastrophe, the switch from slow growth to rapid shrinkage. We first provide a review of the experimental and modeling literature, and then present a new model of microtubule dynamics. We demonstrate that vectorial,...

Descripción completa

Detalles Bibliográficos
Autores principales: Bowne-Anderson, Hugo, Zanic, Marija, Kauer, Monika, Howard, Jonathon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: WILEY-VCH Verlag 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677417/
https://www.ncbi.nlm.nih.gov/pubmed/23532586
http://dx.doi.org/10.1002/bies.201200131
Descripción
Sumario:A key question in understanding microtubule dynamics is how GTP hydrolysis leads to catastrophe, the switch from slow growth to rapid shrinkage. We first provide a review of the experimental and modeling literature, and then present a new model of microtubule dynamics. We demonstrate that vectorial, random, and coupled hydrolysis mechanisms are not consistent with the dependence of catastrophe on tubulin concentration and show that, although single-protofilament models can explain many features of dynamics, they do not describe catastrophe as a multistep process. Finally, we present a new combined (coupled plus random hydrolysis) multiple-protofilament model that is a simple, analytically solvable generalization of a single-protofilament model. This model accounts for the observed lifetimes of growing microtubules, the delay to catastrophe following dilution and describes catastrophe as a multistep process.