Cargando…
Mahogunin ring finger-1 (MGRN1) Suppresses Chaperone-Associated Misfolded Protein Aggregation and Toxicity
Impairment in the elimination of misfolded proteins generates cellular toxicity and leads to various late-onset neurodegenerative diseases. However, the mechanisms by which cells recognize abnormal cellular proteins for selective clearance remain unknown. Lack of the mahogunin ring finger-1 (MGRN1)...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679506/ https://www.ncbi.nlm.nih.gov/pubmed/23756845 http://dx.doi.org/10.1038/srep01972 |
_version_ | 1782272985513590784 |
---|---|
author | Chhangani, Deepak Mishra, Amit |
author_facet | Chhangani, Deepak Mishra, Amit |
author_sort | Chhangani, Deepak |
collection | PubMed |
description | Impairment in the elimination of misfolded proteins generates cellular toxicity and leads to various late-onset neurodegenerative diseases. However, the mechanisms by which cells recognize abnormal cellular proteins for selective clearance remain unknown. Lack of the mahogunin ring finger-1 (MGRN1) E3 ubiquitin ligase in mice causes the development of age-dependent spongiform neurodegeneration. Here, we report for the first time that the MGRN1 E3 ubiquitin ligase interacts and nicely co-localizes with the cytosolic molecular chaperone Hsp70. The expression of MGRN1 increased following exposure to a variety of stressors. The inhibition of autophagy not only elevated endogenous MGRN1 levels but also caused MGRN1 to be recruited to cytosolic ubiquitin-positive inclusion bodies. Finally, we showed that the overexpression of MGRN1 protects against cell death mediated by oxidative and endoplasmic reticulum stress. These data suggest that MGRN1 selectively targets misfolded proteins for degradation and may exhibit viable therapeutic potential for the treatment of spongiform neurodegeneration. |
format | Online Article Text |
id | pubmed-3679506 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-36795062013-06-12 Mahogunin ring finger-1 (MGRN1) Suppresses Chaperone-Associated Misfolded Protein Aggregation and Toxicity Chhangani, Deepak Mishra, Amit Sci Rep Article Impairment in the elimination of misfolded proteins generates cellular toxicity and leads to various late-onset neurodegenerative diseases. However, the mechanisms by which cells recognize abnormal cellular proteins for selective clearance remain unknown. Lack of the mahogunin ring finger-1 (MGRN1) E3 ubiquitin ligase in mice causes the development of age-dependent spongiform neurodegeneration. Here, we report for the first time that the MGRN1 E3 ubiquitin ligase interacts and nicely co-localizes with the cytosolic molecular chaperone Hsp70. The expression of MGRN1 increased following exposure to a variety of stressors. The inhibition of autophagy not only elevated endogenous MGRN1 levels but also caused MGRN1 to be recruited to cytosolic ubiquitin-positive inclusion bodies. Finally, we showed that the overexpression of MGRN1 protects against cell death mediated by oxidative and endoplasmic reticulum stress. These data suggest that MGRN1 selectively targets misfolded proteins for degradation and may exhibit viable therapeutic potential for the treatment of spongiform neurodegeneration. Nature Publishing Group 2013-06-12 /pmc/articles/PMC3679506/ /pubmed/23756845 http://dx.doi.org/10.1038/srep01972 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Article Chhangani, Deepak Mishra, Amit Mahogunin ring finger-1 (MGRN1) Suppresses Chaperone-Associated Misfolded Protein Aggregation and Toxicity |
title | Mahogunin ring finger-1 (MGRN1) Suppresses Chaperone-Associated Misfolded Protein Aggregation and Toxicity |
title_full | Mahogunin ring finger-1 (MGRN1) Suppresses Chaperone-Associated Misfolded Protein Aggregation and Toxicity |
title_fullStr | Mahogunin ring finger-1 (MGRN1) Suppresses Chaperone-Associated Misfolded Protein Aggregation and Toxicity |
title_full_unstemmed | Mahogunin ring finger-1 (MGRN1) Suppresses Chaperone-Associated Misfolded Protein Aggregation and Toxicity |
title_short | Mahogunin ring finger-1 (MGRN1) Suppresses Chaperone-Associated Misfolded Protein Aggregation and Toxicity |
title_sort | mahogunin ring finger-1 (mgrn1) suppresses chaperone-associated misfolded protein aggregation and toxicity |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3679506/ https://www.ncbi.nlm.nih.gov/pubmed/23756845 http://dx.doi.org/10.1038/srep01972 |
work_keys_str_mv | AT chhanganideepak mahoguninringfinger1mgrn1suppresseschaperoneassociatedmisfoldedproteinaggregationandtoxicity AT mishraamit mahoguninringfinger1mgrn1suppresseschaperoneassociatedmisfoldedproteinaggregationandtoxicity |