Cargando…
Diagnostic criteria, specific mutations, and genetic predisposition in gastrointestinal stromal tumors
In 1998, gastrointestinal stromal tumor (GIST) emerged as a distinct oncogenetic entity and subsequently became a paradigm of targeted therapies in solid tumors. Diagnosis of GIST relies on both histology and immunohistochemistry. Ninety-five percent of GISTs express either KIT or DOG-1. Approximate...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3681166/ https://www.ncbi.nlm.nih.gov/pubmed/23776354 http://dx.doi.org/10.2147/TACG.S7191 |
Sumario: | In 1998, gastrointestinal stromal tumor (GIST) emerged as a distinct oncogenetic entity and subsequently became a paradigm of targeted therapies in solid tumors. Diagnosis of GIST relies on both histology and immunohistochemistry. Ninety-five percent of GISTs express either KIT or DOG-1. Approximately 80%–90% of GISTs harbor gain-of-function mutations of either KIT or platelet-derived growth factor receptor alpha polypeptide (PDGFRA) receptor tyrosine kinase (RTK). More than 100 different mutations have been described, some of which are associated with specific clinical and/or histological characteristics. Detection of KIT or PDGFRA mutations is recommended in advanced GISTs because they are highly predictive of tumor response to RTK inhibitors, as well as in KIT-negative cases to confirm diagnosis. In most cases, GISTs are sporadic, but in rare cases, they are related with genetic predisposition, such as neurofibromatosis type 1, Carney triad, Carney–Stratakis syndrome, and inherited KIT or PDGFRA germline mutations. |
---|