Cargando…
Unsupervised Clustering of Subcellular Protein Expression Patterns in High-Throughput Microscopy Images Reveals Protein Complexes and Functional Relationships between Proteins
Protein subcellular localization has been systematically characterized in budding yeast using fluorescently tagged proteins. Based on the fluorescence microscopy images, subcellular localization of many proteins can be classified automatically using supervised machine learning approaches that have b...
Autores principales: | Handfield, Louis-François, Chong, Yolanda T., Simmons, Jibril, Andrews, Brenda J., Moses, Alan M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3681667/ https://www.ncbi.nlm.nih.gov/pubmed/23785265 http://dx.doi.org/10.1371/journal.pcbi.1003085 |
Ejemplares similares
-
Integrating images from multiple microscopy screens reveals diverse patterns of change in the subcellular localization of proteins
por: Lu, Alex X, et al.
Publicado: (2018) -
An Unsupervised kNN Method to Systematically Detect Changes in Protein Localization in High-Throughput Microscopy Images
por: Lu, Alex Xijie, et al.
Publicado: (2016) -
CYCLoPs: A Comprehensive Database Constructed from Automated Analysis of Protein Abundance and Subcellular Localization Patterns in Saccharomyces cerevisiae
por: Koh, Judice L. Y., et al.
Publicado: (2015) -
Accurate Classification of Protein Subcellular Localization from High-Throughput Microscopy Images Using Deep Learning
por: Pärnamaa, Tanel, et al.
Publicado: (2017) -
Objective Clustering of Proteins Based on Subcellular Location Patterns
por: Chen, Xiang, et al.
Publicado: (2005)