Cargando…

The mitochondrial Hsp70 chaperone Ssq1 facilitates Fe/S cluster transfer from Isu1 to Grx5 by complex formation

The mitochondrial Hsp70 chaperone Ssq1 plays a dedicated role in the maturation of iron–sulfur (Fe/S) proteins, an essential process of mitochondria. Similar to its bacterial orthologue HscA, Ssq1 binds to the scaffold protein Isu1, thereby facilitating dissociation of the newly synthesized Fe/S clu...

Descripción completa

Detalles Bibliográficos
Autores principales: Uzarska, Marta A., Dutkiewicz, Rafal, Freibert, Sven-Andreas, Lill, Roland, Mühlenhoff, Ulrich
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3681689/
https://www.ncbi.nlm.nih.gov/pubmed/23615440
http://dx.doi.org/10.1091/mbc.E12-09-0644
Descripción
Sumario:The mitochondrial Hsp70 chaperone Ssq1 plays a dedicated role in the maturation of iron–sulfur (Fe/S) proteins, an essential process of mitochondria. Similar to its bacterial orthologue HscA, Ssq1 binds to the scaffold protein Isu1, thereby facilitating dissociation of the newly synthesized Fe/S cluster on Isu1 and its transfer to target apoproteins. Here we use in vivo and in vitro approaches to show that Ssq1 also interacts with the monothiol glutaredoxin 5 (Grx5) at a binding site different from that of Isu1. Grx5 binding does not stimulate the ATPase activity of Ssq1 and is most pronounced for the ADP-bound form of Ssq1, which interacts with Isu1 most tightly. The vicinity of Isu1 and Grx5 on the Hsp70 chaperone facilitates rapid Fe/S cluster transfer from Isu1 to Grx5. Grx5 and its bound Fe/S cluster are required for maturation of all cellular Fe/S proteins, regardless of the type of bound Fe/S cofactor and subcellular localization. Hence Grx5 functions as a late-acting component of the core Fe/S cluster (ISC) assembly machinery linking the Fe/S cluster synthesis reaction on Isu1 with late assembly steps involving Fe/S cluster targeting to dedicated apoproteins.