Cargando…

2-(4-Hydroxyphenyl)-5-(3-Hydroxypropenyl)-7-Methoxybenzofuran, a Novel Ailanthoidol Derivative, Exerts Anti-Inflammatory Effect through Downregulation of Mitogen-Activated Protein Kinase in Lipopolysaccharide-Treated RAW 264.7 Cells

We reported that ailanthoidol, a neolignan from Zanthoxylum ailanthoides and Salvia miltiorrhiza Bunge, inhibited inflammatory reactions by macrophages and protected mice from endotoxin shock. We examined the anti-inflammatory activity of six synthetic ailanthoidol derivatives (compounds 1-6). Among...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Hyeon Jin, Jun, Jong-Gab, Kim, Jin-Kyung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Korean Physiological Society and The Korean Society of Pharmacology 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3682082/
https://www.ncbi.nlm.nih.gov/pubmed/23776398
http://dx.doi.org/10.4196/kjpp.2013.17.3.217
Descripción
Sumario:We reported that ailanthoidol, a neolignan from Zanthoxylum ailanthoides and Salvia miltiorrhiza Bunge, inhibited inflammatory reactions by macrophages and protected mice from endotoxin shock. We examined the anti-inflammatory activity of six synthetic ailanthoidol derivatives (compounds 1-6). Among them, compound 4, 2-(4-hydroxyphenyl)-5-(3-hydroxypropenyl)-7-methoxybenzofuran, had the lowest IC(50) value concerning nitric oxide (NO) release from lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Compound 4 suppressed the generation of prostaglandin (PG) E(2) and the expression of inducible NO synthase and cyclooxygenase (COX)-2 induced by LPS, and inhibited the release of LPS-induced pro-inflammatory cytokines from RAW264.7 cells. The underlying mechanism of compound 4 on anti-inflammatory action was correlated with the down-regulation of mitogen-activated protein kinase and activator protein-1 activation. Compound 4 is potentially an effective functional chemical candidate for the prevention of inflammatory diseases.